Flattened Image Trees:
A powerful kernel ulmage format

Feb 21, 2013

Joel A Fernandes <joelagnel@ti.com>

W3 TEXAS INSTRUMENTS

Goals of this talk

« Shortcomings of Legacy image formats

* To understand existing challenges in
multicomponent Images

 How these have been solved

 How these can be tackled using FIT
* Recent applications (verified boot)
 Advantages of FIT

* Future work

W3 TEXAS INSTRUMENTS

Classical Image formats

zlmage format

Header

head.S

Decompression code

Compressed kernel Payload

Very limited:

* Not much information about the kernel itself (architecture?)
* No support embedding DT

* No checksums for data integrity

« Compression format is fixed, and requires kernel recompile

Many others...

Compression is fixed by Kernel config..
CONFIG_KERNEL_GZIP is not set
CONFIG_KERNEL_LZMA is not set
CONFIG_KERNEL_XZ is not set
CONFIG_KERNEL_LZO=y

W3 TEXAS INSTRUMENTS

Classical Image formats

dtbimage format (PPC)

Header - Same like zImage, but can embed a Device

tree blob

head. S
- Useful for platforms that don’t supporting

passing of a DT from a bootloader.
Decompression code

« Same drawbacks as the zlmage

Compressed kernel Payload

Device Tree

W3 TEXAS INSTRUMENTS

4

Classical Image formats

simplelmage format (PPC)

Header

head.S

Decompression code

Compressed kernel Payload

Device Tree

« Same like dtblmage but can be executed from
anywhere in memory

» Useful when Firmware cannot pass data to the
kernel or kernel is expected to boot without
Firmware support

« All information required for boot is present in
the embedded DTB

* Again- all the earlier drawbacks in this super-
simple format.

5

W3 TEXAS INSTRUMENTS

zlmage hacks (ARM)
to support appending of DT

 Code added to ziImage head.S to support appending of DT blob

Drawbacks:

« Ugly- no real notion of what is appended.

* Only one DT. Makes the image a single-platform one.
« Still lacks kernel build support. Floating hacks.

6
W3 TEXAS INSTRUMENTS

Overview of U-Boot’s image format

 OS / Architecture - independent

* Multiple compression types — gzip, bzip2, Izma
* CRC checksums

* Ability to execute in place (XIP)

* Meta-data about image including name,
architecture etc.

* Very efficient to parse (13 years back)

W3 TEXAS INSTRUMENTS

Single Component U-Boot Images

Wi3 TEXAS INSTRUMENTS

Structure of the Legacy U-Boot Image

Name

« Only supports a single component (extended
for multicomponent, more on this later)

Architecture

« Architecture/OS fields exist too (not shown) Tamestanp
« Magic number- checks if legacy or FIT Magic Number
« Payload addr- where to load in memory Payload load addr

(ex. Px81060000)

e Size — how much to load
« Entry point- where should bootloader jump

Payload Size

* Image type- Single, Multicomponent, Inplace EltoyRolnt
- Payload- Kernel or other image payload Inage Type
Checksum

Compression Type

Image Payload
(Kernel image data, typically a
compressed zImage)

NTS

Booting of a Single Component Image

0x82000000

« U-Boot loads ulmage into memory.

« Bootm is called passing the address

Magic Number

» Parses ulmage, copies payload into load addr if reqd

Payload load addr
(ex. ©x81000000)

A 4
0x81000000

Payload Size

Entry Point

Copying to loadaddr is
not required if booting
from NOR; or doing an
XIP ulImage boot.

Image Type

10

Wi3 TEXAS INSTRUMENTS

mkimage can show load addr and ep

mkimage -1 arch/arm/boot/ulImage

Image Name: Linux-3.7.0-26691-gea93eel

Created: Sat Jan 19 22:01:36 2013
Image Type: ARM Linux Kernel Image (uncompressed)
Data Size: 2842064 Bytes = 2775.45 kB = 2.71 MB

Load Address: 80008000
Entry Point: 80008000

W3 TexAs INSTRUMENTS "

Multi Component U-Boot Images

Wi3 TEXAS INSTRUMENTS

Single Component Image limitations

Users found it necessary to have more than one componentin a
ulmage such as Ramdisk, DT blob. Single component images limited.

Multiple components were required to be included in some cases

Booting using a single image over DHCP

Necessity to use more than 1 component

Recovery of systems- where you want an initrd to give you an FS
Firmware upgrade where it is not easy to download multiple components
Security- sometimes folks want to include cryptographic signatures.

A new image type in the “single-component” image header was
introduced, called IH_MULTI with additional components in payload.

Image header supports only CRC32, no support for other checksums

Wi3 TEXAS INSTRUMENTS

13

Structure of a Mutli Component Image

Start of Image
Payload

Legend

Metadata

Image
payload

Magic Number

Payload load addr
(ex. ©x81000000)

Payload Size

Entry Point

Image Type

Size of Kernel

Size of Ramdisk

Size of DT blob

Kernel Image (zImage/Image)

Ramdisk

Device Tree blob

« Metadata into the
single image payload

* A null-terminated table
of component sizes
was introduced.

« This table was actually
a part of the payload
that contained just the
kernel image
previously..

W3 TEXAS INSTRUMENTS

14

Structure of a Mutli Component Image

Start of Image
Payload

Legend

Metadata

Image
payload

Magic Number

Payload load addr
(ex. ©@x81000000)

Payload Size

Entry Point

Image Type

Size of Kernel

Size of Ramdisk

Size of DT blob

Kernel Image (zImage/Image)

Ramdisk

Device Tree blob

« Table entries hard-
coded to a pre-defined
component. id 1 for
ramdisk, id 2 for dt.

 Fixed mapping of id to
component type.

Ramdisk can’t be
pushed after DT blob

 Worked.. But has
drawbacks, more on
that next..

15

W3 TEXAS INSTRUMENTS

IH TYPE_MULTI users can DHCP a single image with kernel,
ramdisk and dt. Easy!

Problems with this approach..

« The meta-data stored in MC was limited.. Can’t load more than 1
position dependent component . “load address” is single.

« Hardcoding of indices of image components in the code (1=kernel,
2=ramdisk.. Not cool)

— Associating numbers instead of names to image components is messy
meta-data is not self explanatory.

— What if in the future one image component had to be removed while
another one was added? All of a sudden the component indexes of all
components change and code would need to be modified.

— Difficult to maintain code. Code is already very hacked up

16

W3 TEXAS INSTRUMENTS

Problems with this approach..

 Limited support for adding more components, only the 3 — kernel,
ramdisk, and single DT blob

— What if someone wants to add a new crypto graphic signature
— Or a secondary ramdisk

— Or an alternate device tree blob?

— Or some other component that nobody thought of?

« How can multiple kernels be represented? Not possible as
several fields in header are for only 1 kernel (arch, os, load addr)

« doesn’t scale for future designs and encourages introduction of
more hacks.

« Still no support for stronger checksums.. Nothing can be done
about that even with IH_TYPE_MULTI

17

W3 TEXAS INSTRUMENTS

Introducing Tree-like structures
to represent images

Wi3 TEXAS INSTRUMENTS

Add some flexibility to an image ...
mix meta-data with data

« Trees are a nice way to represent data with meta-data
— Arbritrary arragement of nodes
— Nodes can be named and can have Properties
— Properties can even be binary images such as in the case of FIT

So wouldn'’t it be cool to represent a kernel image in the form:
kernel {

description = “Linux kernel 3.8”
loadaddress = “Ox80200000”
entrypoint = “Ox80008000”

data = <binary kernel image>

}

19
W3 TEXAS INSTRUMENTS

What is a Device Tree?

The Device Tree is a data structure for describing hardware.
Rather than hard coding every detail of a device into an operating
system, many aspect of the hardware can be described in a data
structure that is passed to the operating system at boot time. The
device tree is used both by Open Firmware, and in the standalone
Flattened Device Tree (FDT) form.

e Describes functional layout
— CPUs
— Memory
— Peripherals

e Describes configuration
— Console output
— Kernel parameters
— Device names

20
W3 TEXAS INSTRUMENTS

Can we (re-)use the Device Tree?

» Already used in the kernel for “device tree”-based platforms
« Tools that build device trees already part of the kernel.

» Device Tree compiler has support to embed binaries in a tree
property.

21
W3 TEXAS INSTRUMENTS

Flattened Image Trees

* A need for stronger checksums

* An image format that makes use of DT to build an image as a tree
« Nodes correspond to image components

* Property can have binary values using tags

« Perfect use for multicomponent images

Authored by Marian Balakowicz m8@semihalf.com

originally, for Power PC architecture.

A bit of history..

« Uboot support for pcs440ep required stronger checksums
« Old legacy header limited, couldn’t support md5/sha.

» Led to looking for a new format using existing tools like dtc.

22
W3 TEXAS INSTRUMENTS

mailto:m8@semihalf.com

Architectures and Platforms using FIT

PowerPC:

- XPedite5400 board Freescale Eight-Core P4080 Processor-Based
— FIT is infact supported on most if not all PowerPC based FreeScale boards

- MPC8544E PowerQUICC Ill based Socrates board

ARM:

- Neo Freerunner running Openmoko uses FIT

- ARM Cortex-A8 based Beaglebone. Demo follows

- Xilinx Zyng SoC (ARM Cortex-A9)

- Freescale i.MX31 based on ARM1136JF-S

- Samsung Chromebook running Samsung Exynos 5 Dual Processor

x86:

- Under review: Simon Glass has posted patches to boot a FIT on x86 and pass it a DT.
Other:

Microblaze softcpu core from Xilinx

23
W3 TEXAS INSTRUMENTS

zlmage hacks to support appending of DT

« Many users prefer to have DT blob embedded into kernel

« Current way to do it is to append a DTB to kernel and build kernel
with CONFIG_APPENDED DTB.

Drawbacks..
« Ugly

« No clarity of what data is appended to the kernel for a third
person who analyzes the image. Unlike FIT.

 One DT can be appended, unlike FIT. makes image single-
platform.

* No kernel support still to build this. Out-of-tree hacks floating due
to above drawback

24
W3 TEXAS INSTRUMENTS

Appended DT hack code ..

index abfce28..131558f 100644

--- a/arch/arm/boot/Makefile

+++ b/arch/arm/boot/Makefile

@@ -55,6 +55,9 @@ $(obj)/zImage: $(obj)/compressed/vmlinux FORCE
$(call if changed,objcopy)
@%(kecho) ' Kernel: $@ is ready'

+$(obj)/zImage-dtb.%: $(obj)/%.dtb $(obj)/zImage
+ cat $(obj)/zImage $< > $@

+

endif

+$(obj)/ulmage-dtb.%: $(obj)/zImage-dtb.% FORCE

+ $(call if changed,uimage)
+ @echo ' Image $@ is ready'
+

25
W3 TEXAS INSTRUMENTS

A quick demo of FIT to show its flexibility

For the first demo, we show a FIT containing
- A Single kernel
- A single Device Tree blob

- Fit sources (.its files)
- Using mkimage to build it
- U-Boot commands to boot the image

- Boot log

e Demo uses a Beaglebone, U-Boot v2013.01-rc2, kernel 3.8

http://www.beagleboard.org/

26
W3 TEXAS INSTRUMENTS

http://www.beagleboard.org/

demo 1: A simple FIT

Sources of kernel_fdt.its

/dts-vl/;
/ {
description = "Simple image with single Linux kernel and FDT blob";
#address-cells = <1>;
images {
kernel@l {
description = "Vanilla Linux kernel";
data = /incbin/("./zImage");
type = "kernel";
arch = "arm";
os = "linux";
compression = "none";
load = <Ox80008000>;
entry = <0x80008000>;
hash@l {
algo = "crc32";
};
hash@2 {
algo = "shal";
}s5
}s
[contd..]

27
W3 TEXAS INSTRUMENTS

dt source contd..

fdt@l {
description = "Flattened Device Tree blob";
data = /incbin/("./am335x-bone.dtb");
type = "flat_dt";
arch = "arm";
compression = "none";
hash@l {
algo = "crc32";
¥
hash@2 {
algo = "shal";
}s
};
}s

/* a notable concept of FIT, “configurations” */
configurations {
default = "conf@l";

conf@l {
description = "Boot Linux kernel with FDT blob";
kernel = "kernel@l";
fdt = "fdt@1";

¥

}s
}s

28
W3 TEXAS INSTRUMENTS

mkimage -f kernel_fdt.its kernel_fdt.itb
FIT description: Simple image with single Linux kernel and FDT blob

Created:

Thu Jan 31 23:44:13 2013

Image O (kernel@l)

Vanilla Linux kernel BUIId the FIT US|ng mklmage

Description:
Type:
Compression:
Data Size:
Architecture:
0S:

Load Address:
Entry Point:
Hash algo:
Hash value:
Hash algo:
Hash value:

Image 1 (fdt@1)

Description:
Type:
Compression:
Data Size:
Architecture:
Hash algo:
Hash value:
Hash algo:
Hash value:

Kernel Image

uncompressed

2842064 Bytes = 2775.45 kB = 2.71 MB
ARM

Linux

0x80008000

0x80008000

crc32

d4e59951

shal
933877alfalcadlfldc4725918eecaddc872elac

Flattened Device Tree blob

Flat Device Tree

uncompressed

11856 Bytes = 11.58 kB = 0.01 MB

ARM

crc32

60fe7c97

shal
b206e49a4177ee285elcbb225ae764815af4da7c

Default Configuration: 'conf@l’
Configuration © (conf@l)

Description:
Kernel:
FDT:

Boot Linux kernel with FDT blob
kernel@l
fdt@1

Notice support for strong checksum

algorithms like MD5, SHA1, ... Just doing a

crc32 might not good enough for certain
applications. Only image format that’s so
robust!

W3 TEXAS INSTRUMENTS

29

Boot it!

U-Boot commands to load the simple FIT

fitfdt=/boot/kernel fdt.itb

setenv loadaddr ©0x82000000;

run mmcargs;

ext2load mmc ${mmcdev}:2 ${loadaddr} ${fitfdt};

bootm ${loadaddr};

30
Wi3 TEXAS INSTRUMENTS

Boot it!

U-Boot SPL 2013.01-rc2-00174-ge56cdd7-dirty (Feb 01 2013 - 00:20:19)

U-Boot 2013.01-rc2-00174-ge56cdd7-dirty (Feb 01 2013 - 00:20:19)

Booting kernel from FIT Image at 82000000 ...
Using 'conf@l' configuration
Trying 'kernel@l' kernel subimage

Description: Vanilla Linux kernel

Type: Kernel Image

Compression: uncompressed

Data Start: 0x820000ec

Data Size: 2842064 Bytes = 2.7 MiB

Architecture: ARM

0sS: Linux

Load Address: 0x80008000

Entry Point: ©x80008000

Hash algo: crc32

Hash value: d4e59951

Hash algo: shal

Hash value: 933877alfalcadlfldc4725918eecaddc872elac

Verifying Hash Integrity ... crc32+ shal+ OK

(contd.....)

W3 TEXAS INSTRUMENTS

31

Boot it!

(contd..)

Flattened Device Tree from FIT Image at 82000000
Using 'conf@l' configuration
Trying 'fdt@l' FDT blob subimage

Description: Flattened Device Tree blob

Type: Flat Device Tree

Compression: uncompressed

Data Start: 0x822b5fe4

Data Size: 10568 Bytes = 10.3 KiB

Architecture: ARM

Hash algo: crc32

Hash value: 444390ae

Hash algo: shal

Hash value: 053013b384fb47ce796464a70ec618cf7e65b2a3
Verifying Hash Integrity ... crc32+ shal+ OK
Booting using the fdt blob at ©x822b5fe4
Loading Kernel Image ... OK

OK

kernel loaded at 0x80008000, end = 0x802bdddo
Loading Device Tree to 8fe44000, end 8fe49947 ... OK

Starting kernel ...

W3 TEXAS INSTRUMENTS

32

demo 2: Creating a FIT with a recovery configuration

Add a ramdisk node to the original FIT source. Call it kernel fdt rd.its

\ A
images {

kernel@l {

}

fdt@l {

}

ramdisk@l {
description = "recovery ramdisk";
data = /incbin/("./ramdisk.gz");
type = "ramdisk";
arch = "arm";
os = "linux";
compression = "gzip";
load = <0000000O>;
entry = <00000000>;
hash@l {

algo = "shal";
}s
¥
¥
}s

33
W3 TEXAS INSTRUMENTS

demo 2: Creating a FIT with a recovery configuration

(contd..)

/* Also update the configuration node - add 2 configs: default and recovery */
configurations {
default = "defaultconf@l";
defaultconf@l {
description = "Boot Linux kernel with FDT blob";
kernel = "kernel@l";
fdt = "fdt@1";
¥
recoveryconf@l {
description = "Boot Linux kernel + fdt with ramdisk for recovery";
kernel = "kernel@l";
ramdisk = "ramdisk@l";
fdt = "fdt@1";
¥
¥
}s

W3 TEXAS INSTRUMENTS *

demo 2: Build the FIT

mkimage -f kernel_fdt_rd.its kernel_fdt_rd.itb

FIT description: Simple image with single Linux kernel and FDT blob
Created: Sun Feb 3 17:56:05 2013

Image 9 (kernel@l)

Image 1 (fdt@1)

Image 2 (ramdisk@1l)
Description: recovery ramdisk

Type: RAMDisk Image

Compression: gzip compressed

Data Size: 2022580 Bytes = 1975.18 kB = 1.93 MB
Architecture: ARM

Hash algo: shal

Hash value: 2bc8b8e2064e€2c0ab72dd214996c50fc2b0549da
Default Configuration: 'defaultconf@l'
Configuration @ (defaultconf@l)

Description: Boot Linux kernel with FDT blob

Kernel: kernel@l

FDT: fdt@1
Configuration 1 (recoveryconf@l)

Description: Boot Linux kernel with ramdisk for recovery and FDT blob

Kernel: kernel@l
Init Ramdisk: ramdisk@l
FDT: fdt@1

35
W3 TEXAS INSTRUMENTS

demo 2: Somebody yanked the MMC card

Lets Boot the recovery configuration

fitfdt=/boot/kernel fdt rd.itb

setenv loadaddr 0x82000000;

run ramargs;

ext2load mmc ${mmcdev}:2 ${loadaddr} ${fitfdt};

bootm ${loadaddr}#recoveryconf;

/* Booting the default conf */
bootm ${loadaddr}#defaultconT;

36
W3 TEXAS INSTRUMENTS

Bootlog of U-Boot booting the #recoveryconf

U-Boot# run fitrdboot
4876960 bytes read in 980 ms (4.7 MiB/s)
Booting kernel from FIT Image at 82000000 ...
Using 'recoveryconf@l' configuration
Trying 'kernel@l' kernel subimage
Description: Vanilla Linux kernel
Type: Kernel Image

Loading init Ramdisk from FIT Image at 82000000 ...
Using 'recoveryconf@l' configuration
Trying 'ramdisk@l' ramdisk subimage

Description:
Type:
Compression:
Data Start:
Data Size:

Architecture:

0S:

Load Address:

Entry Point:
Hash algo:
Hash value:

Verifying Hash Integrity ...

recovery ramdisk
RAMDisk Image

gzip compressed
0x822b8alc

2022580 Bytes = 1.9 MiB
ARM

Linux

0x00000000

0x00000000

shal
2bc8b8e2064e2c0ab72dd214996c50fc2b0549da
shal+ OK

W3 TEXAS INSTRUMENTS

37

Bootlog of U-Boot booting the #recoveryconf

Flattened Device Tree from FIT Image at 82000000
Using 'recoveryconf@l' configuration
Trying 'fdt@l' FDT blob subimage

OK
kernel loaded at 0x80008000, end = 0x802bdddo

Loading Ramdisk to 8fc5boeo, end 8fe48cb4 ... OK
Loading Device Tree to 8fc55000, end 8fc5a%47 ... OK

Starting kernel ...

[1.599982] VFS: Mounted root (ext2 filesystem) on device 1:0.
[1.607883] devtmpfs: mounted

[1.611581] Freeing init memory: 248K

Please press Enter to activate this console.

[root@arago /]#
[root@arago /]#
[root@arago /]#
[root@arago /]#

38
W3 TEXAS INSTRUMENTS

More use cases of FIT

Debug vs Production Kernel

» Multiple kernels one with maybe debug options enabled, one normal.
* both have their own configuration nodes in the FIT.

» User boot a #debugkernel for debugging and a #production for production

A multiplatform Kernel image

» Multiple DTBs/configuration nodes embedded in a FIT; U-Boot reads
EEPROM boots correct “configuration”.

* multibooting same image on different boards.

39
W3 TEXAS INSTRUMENTS

Another real world usecase.... Verified boot by Simon Glass

/ A

images A

kernel@l {

data = /incbin/("...");
type = “kernel”;

arch = "arm";

os = "linux";
compression = "none";

load = <@x111>;
entry = <0x222>;
kernel-version = <1>;
hash@l {
algo = "shal";
value = <....>;

}s

signature@l {

Just showing how
flexible the image format
is that one could extend
it easily for a usecase
that wasn’t even thought
off! With very little
“hack” code.

}s

algo = "shal,rsa2048";

key-hint = "dev";

description = “Dev-signed kernel 3.8.0-33,
signer = “mkimage”;

signer-version = “ v2013.01%;

value = <....>;

signature@2 {

Fi}s}s

algo = "shal,rsa2048";
key-hint = “production”;

snow FDT”;

description = “Dev-signed kernel 3.8.0-33, snow FDT”;

signer = “mkimage”;
signer-version = “ v2013.01%;
value = <....>;

W3 TEXAS INSTRUMENTS

40

And extended even more for better security.. Signed
configurations.

What if someone uses the same signed images, but changes the configuration?

configurations {
default = "conf@l";
conf@l {
kernel = "kernel@l";
fdt = "fdt@l";
signature@l {
algo = "shal,rsa2048";
key-name-hint = "dev";
sign-images = "fdt", "kernel";
}s
}s
}s

41
W3 TEXAS INSTRUMENTS

A potential target for FIT
P2020RDB board — booting an AMP configuration

* Freescale P2020 dual core SoC

 Currently tedious pulls same kernel twice

* Pulls 2 DTBs

» Passes the right DTB to each kernel (i2c bus differences etc)

 Very good usecase for FIT- roll all the AMP kernels and device trees
necessary into one FIT image

42
W3 TEXAS INSTRUMENTS

And even more uses!

« Upgrade procedures for devices, where the vendor wants to be able
to distribute a single file for his target systems to avoid customers
bricking their devices by choosing incompatible combinations.

43
W3 TEXAS INSTRUMENTS

Future work and challenges

* Need a simple way to extend the “make dtbs” target.

* Probably easier to FIT patches for Kbuild accepted than was before.
 Challenges in the community, U-boot hate

« U-boot currently requires a loadaddr for FIT (fix has been POC’d)

« Hardware accelerator support for Crypto operations

* Questions?

44
Wi3 TEXAS INSTRUMENTS

Thanks to

« Simon Glass
» Peter Tyser
» Wolfgang Denx

45
W3 TEXAS INSTRUMENTS

