
RCU in 2019

Joel Fernandes <joel@joelfernandes.org>
Google.

What I do? Recent work history

● Joined Google in 2016 : Task Scheduler , BPF for tracing etc.

○ Complex stuff

What I do? Recent work history

● 2017: Start exploring RCU internals:

○ Very complex stuff

What I do? Recent work history

● 2019: Parenting a 2 year old

○ Very Very complex stuff

How I got started with RCU?

● Worked on Linux for a decade or so.

● People who understand RCU internals … < 7 : Opportunity!!

● Making sense of RCU traces, logs, concepts.

Time to put mysteries to end.

● Helping community / company with RCU issues, concepts,

improvements, reviewing.

● New feature development.

What am I doing with RCU now?

Paul McKenney says… “Here is

your nice elegant little algorithm”

Who am I ; and how I got started with RCU?

Started questioning RCU’s internal design (~2 years ago)

Paul McKenney says… “Here

is your nice elegant little

algorithm equipped to survive

in the Linux Kernel”

Who am I ; and how I got started with RCU?

 Credits

RCU is the great decades-long work of Paul Mckenney and

others. I am relatively new on the scene (~ 2 years).

Agenda

● Introduction

● TREE RCU

● RCU Flavor consolidation

○ Performance

○ Scheduler Deadlock fixes

● TASKS RCU

● List RCU API improvements (if time permits)

 Introduction

The basic idea of RCU

Intro: Typical RCU workflow

Say you have some data that you have to share between a reader/writer section.
struct shared_data {

int a;

long b;

};

int reader(struct shared_data *sd) { int writer(struct shared_data *sd) {

if (sd->a) sd->b = 1;

return sd->b; sd->a = 2;

return 0; }

}

Intro: Typical RCU workflow

One way is to use a reader-writer lock.
int reader(struct shared_data *sd) { void writer(struct shared_data *sd) {

read_lock(&sd->rwlock); write_lock(&sd->rwlock);

if (sd->a) sd->b = 1;

ret = sd->b; sd->a = 2;

read_unlock(&sd->rwlock); write_unlock(&sd->rwlock);

return ret; }

}

Some concepts first: RCU read-side critical section
struct shared_data *global_sd;

int reader() {

rcu_read_lock();

 sd = rcu_dereference(global_sd);

if (sd->a)

ret = sd->b;

rcu_read_unlock();

return ret; }

}

Some concepts first: What is a quiescent state?

A state that an entity (CPU or task) passes through that is impossible within
an RCU-read side critical section.

A waiting period where we :

● start the wait - by writer
● end the wait - all entities have passed through the Quisecent state.

Finish GP wait means all readers STARTED PRIOR TO WAIT have finished.

Some concepts first: What is a Grace period?

Some concepts first: What is a Grace period?

Writer
GP START

GP END

QS

QS QS

QS

Reader

Reader

Reader

QS

CPU 0 CPU 1 CPU 3CPU 2 CPU 4
(Idle)

synchronize_rcu()

Time

Intro: Typical RCU workflow

Say you have some data that you have to share between a reader/writer section.
struct shared_data {

int a;

long b;

};

int reader(struct shared_data *sd) { int writer(struct shared_data *sd) {

if (sd->a) sd->b = 1;

return sd->b; sd->a = 2;

return 0; }

}

Intro: Typical RCU workflow

One way is to use a reader-writer lock.
int reader(struct shared_data *sd) { void writer(struct shared_data *sd) {

read_lock(&sd->rwlock); write_lock(&sd->rwlock);

if (sd->a) sd->b = 1;

ret = sd->b; sd->a = 2;

read_unlock(&sd->rwlock); write_unlock(&sd->rwlock);

return ret; }

}

Intro: Typical RCU workflow: or use RCU…
struct shared_data *global_sd;

int reader() { void writer() {

rcu_read_lock(); struct shared_data *sd, *old_sd;

struct shared_data sd = spin_lock(&sd->lock);

rcu_dereference(global_sd); old_sd = rcu_dereference(global_sd);

 sd = kmalloc(sizeof(struct shared_data);

if (sd->a) *sd = *old_sd;

ret = sd->b; sd->a = 2;

rcu_read_unlock(); rcu_assign_pointer(global_sd, sd);

spin_unlock(&sd->lock);

synchronize_rcu();

return ret; kfree(old_sd);

} }

Intro: Fastest Read-mostly Primitive

Intro: Writes are costly

What is cost?

● Grace period cycle.

● Time.

But...

○ Writes are costly but per-update cost is amortized.

○ 1000s or millions of updates can share GP.

Intro: When to use RCU vs something else?

● If data structure is updated less than 10% of time.

● Need it for other special use cases.

○ Check Documentation/RCU/checklist.txt

● Many more use cases:

○ Wait for completion, locking, refcount implementation etc.

○ Check RCU decades later paper:

https://pdos.csail.mit.edu/6.828/2018/readings/rcu-decade-later.pdf

https://pdos.csail.mit.edu/6.828/2018/readings/rcu-decade-later.pdf

Toy #1 based on ClassicRCU (Docs: WhatIsRCU.txt)

 Classic RCU (works only on PREEMPT=n kernels):

 #define rcu_dereference(p) READ_ONCE(p);
 #define rcu_assign_pointer(p, v) smp_store_release(&(p), (v));

 void rcu_read_lock(void) { }
 void rcu_read_unlock(void) { }

 void synchronize_rcu(void)
 {
 int cpu;
 for_each_possible_cpu(cpu)

 run_on(cpu);
 }

QUIZ: Why will this not work on a preemptible kernel?
QUIZ: What are the drawbacks of this? Ok.. Now let’s see the bear!

 TREE_RCU

TREE_RCU is the most complex and widely used flavor of RCU.

“ If you are claiming that I am worrying unnecessarily, you are
probably right. But if I didn't worry unnecessarily, RCU wouldn't work
at all! ”
— Paul McKenney

There’s also other specialized flavors: TINY RCU, SRCU, TASKS.

Intro: How TREE_RCU works?

 qsmask: 1 1

CPU 0 CPU 1

 qsmask: 1 1

CPU 2 CPU 3

 qsmask: 1 1

TREE_RCU example: Initial State of the tree

 qsmask: 1 0

CPU 0 CPU 1

 qsmask: 1 1

CPU 2 CPU 3

 qsmask: 1 1

TREE_RCU example: CPU 1 reports QS

 qsmask: 1 0

CPU 0 CPU 1

 qsmask: 1 0

CPU 2 CPU 3

 qsmask: 1 1

TREE_RCU example: CPU 3 reports QS

(Notice that the 2 QS updates have proceeded without any synchronization needed)

 qsmask: 0 0

CPU 0 CPU 1

 qsmask: 1 0

CPU 2 CPU 3

 qsmask: 0 1

TREE_RCU example: CPU 0 reports QS

(Now there has been an update at the root node)

 qsmask: 0 0

CPU 0 CPU 1

 qsmask: 0 0

CPU 2 CPU 3

 qsmask: 0 0

TREE_RCU example: CPU 2 reports QS

(notice that only 2 global updates were needed instead of 4. On a system with 1000s of CPUs, this will be at
most 64)

Intro: Components of TREE RCU (normal grace period)

GP Thread
(rcu_preempt or

rcu_sched)

CPU 0 CPU 1 CPU 2 CPU 3

softirq softirq softirq softirq

timer timer timer timer

Intro: Life Cycle of a grace period

Waiting for a new
GP request

Force Quiescent
State (FQS) loop
(rcu_gp_fqs_loop)

Are ALL QS marked?
(root node qs_mask == 0)

Mark and
Propagate GP end
down tree
(rcu_gp_cleanup sets
gp_seq of rcu_state, all
nodes)

Queue wake up
callback

(rcu_segcblist_enqueue)

Request a new GP
(rcu_start_this_gp)

Sleep

Continue
Softirq

CB exec

Propagate QS up
TREE

Mark CPU QS

All CPUs done?
(Set Root node qsmask = 0)

Fo
r i

dl
e

C
PU

s

For idle /CPUs

Once CPU notices GP is done
(rcu_pending() in the tick path

rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq)

Is a GP in
progress?

Tick Softirq

WriterGP thread

synchronize_rcu

Wake up

 L
en

gt
h

of
 a

 G
P

(C
al

le
r’s

 v
ie

w
)

Propagate start of
GP down the TREE

(rcu_gp_init)

Implied QS

● CPU is already in a certain state:

○ IDLE

○ OFFLINE

○ USER MODE

Light weight QS

● Does not end the grace period yet.

● Just marks CPU-locally and someone ELSE reports up the tree LATER.

What happens?

● Start of GP sets rcu_data::cpu_no_qs

● Lightweight QS reporting clears it which says CPU is DONE.

Where does it happen?

● Scheduler tick

● Context switch

Heavy weight QS

● Can end the grace period due to tree report.

● Happens less often : Uses mem barriers, atomics, locking etc.

● Happens only AFTER the light weight QS.

Where does it happen?

● softirq

● fqs_loop

○ Due to transition to NOHZ - idle/user mode

○ cond_resched() in PREEMPT=n kernels

● rcu_read_unlock_special() in some cases.

Example of light weight and heavy weight QS

Task 1 Task 2 Task 3 Task 1

CS CS CS

Tick Tick

Task 2 Task 3

CS CS CS softirq

Some CPU called
synchronize_rcu()

Lightweight
QS update

 Heavy weight QS update

Intro: What happens in softirq ?

CPU 0

softirq

timer

Per-CPU Work:

● QS reporting for CPU and propagate up tree.
● Invoke any callbacks whose GP has completed.

○ (TODO: Check that if there are no callbacks queued on CPU,
can we skip softirq?)

Caveat about callbacks queued on offline CPUs:
PaulMck says:
> And yes, callbacks do migrate away from non-offloaded CPUs that go
> offline. But that is not the common case outside of things like
> rcutorture.

The magic of {TIF,PREEMPT}_NEED_RESCHED

Task LowPrio Task HighPrioWakeupIRQ

IRQ return causes
Entry into scheduler
And CONTEXT SWITCH

TaskHighPrio wakes
up in IRQ handler
and task’s
TIF_NEED_RESCHED
flag now set (low<hi)

The magic of {TIF,PREEMPT}_NEED_RESCHED

Task A Task BSCHED-TICK

IRQ return causes
Entry into scheduler
And CONTEXT SWITCH

Tick IRQ notices
Task A has
exhausted time
quantum :
Task’s
TIF_NEED_RESCHED
flag now set

The magic of {TIF,PREEMPT}_NEED_RESCHED

Task A Task BSCHED-TICK

Tick IRQ notices Task A
has exhausted time
quantum :
Per-CPU
PREEMPT_NEED_RESCHED
flag is now set.

Task A does
preempt_disable();

IRQ return CANNOT
preempt task A

Task A continues

Task A does
preempt_enable();
which causes
entry into scheduler
And CONTEXT SWITCH as
the
PREEMPT_NEED_RESCHED
bit is set.

Task is in kernel mode

Intro: Grace Period has started, what’s RCU upto?

At around 100ms:

GP THREAD

Sched-Tick

Set Per-CPU
urgent_qs flag

Set task’s
need_resched
flag.

Enter
scheduler

Report
QS

(Note: Scheduler entry can happen either in next TICK or next preempt_enable())

!CONFIG_PREEMPT kernels and cond_resched() :

Task A Task B

Task A does cond_resched()
due to flag.

Tick IRQ notices
Task A has
exhausted time
quantum
PREEMPT_NEED_
RESCHED flag is set.

SCHED-TICK

IRQ return does
NOTHING

Task A continues

RULE:
cond_resched() cannot be in rcu reader section.

BAD:
rcu_read_lock();
cond_resched();
rcu_read_unlock();

We can use that to our advantage:

RCU Read-side
critical section

cond_resched() Report
QS

RCU Read-side
critical section

RCU Read-side
critical section

Intro: Grace Period has started, what’s RCU upto?

At around 200ms: Put cond_resched() on steroids:

GP THREAD

cond_resched()

Request help
from
cond_resched()
for PREEMPT=n

(by setting
Per-cpu
need_heavy_qs
flag)

Report HEAVY-WEIGHT QS
by “fake” dyntick idle
transition forcing the
fqs_loop to mark CPU to be
in QS.

RCU Read-side
critical section

Intro: Grace Period has started, what’s RCU upto?

At around 300ms turn on TICK for nohz_full kernel mode:

GP THREAD

Send IPIs to
CPUs that are
still holding up

RCU read-side
critical section

IPI handler
Turns on TICK

SCHED TICK

SCHED TICK

Report
QS

RCU Read-side
critical section

Intro: Grace Period has started, what’s RCU upto?

At around 1 second of start of GP:

SCHED TICK

Set task’s
need_qs flag

Report QS from
rcu_read_unlock()

Tasks-RCU
“We all jump on a y̶e̶l̶l̶o̶w̶ ̶s̶u̶b̶m̶a̶r̶i̶n̶e̶ dynamic trampoline” -- Beatles

TasksRCU : For dynamic trampolines

Problem: Ftrace allocates dynamic trampolines for callbacks.

Function foo

Call trampoline
Dynamic Trampoline
function

Preemption from Task

Func Callback

TasksRCU : For dynamic trampolines

Problem: Ftrace allocates dynamic trampolines for callbacks.

Function foo

Call trampoline

Preemption Back to Task

Trampoline GONE

BOOM!

Solution: TasksRCU

Read-side critical section: Trampoline

Quiescent state: Task blocking

Grace Period: Wait for all tasks to block

TasksRCU : For dynamic trampolines

Solution: Disconnect trampoline, but don’t free it yet.

Function foo

Dynamic Trampoline
function

Preemption from Task

TasksRCU : For dynamic trampolines

Solution: Wait for all tasks to block (synchronize_rcu_tasks()).

Function foo

Dynamic Trampoline
function

Preemption back to Task
And then go to sleep.

TasksRCU : For dynamic trampolines

Solution: Free trampoline

Function foo

Trampoline GONE

TasksRCU : For dynamic trampolines

Why wouldn’t rcu_read_lock() with synchronize_rcu() work?

Function foo

Call trampoline
rcu_read_lock();

rcu_read_unlock();

Preemption from Task.

 RCU Flavor consolidation

Different RCU “flavors”

RCU-sched

Reader Section: !preemptible();

Entry into RCU read-side critical section:

a. rcu_read_lock_sched();

b. preempt_disable();

c. local_irq_disable();

d. IRQ entry.

Different RCU “flavors”

RCU-bh

Reader Section: Bottom half disable

Entry into RCU read-side critical section:

a. rcu_read_lock_bh();

b. local_bh_disable();

c. SoftIRQ entry.

Different RCU “flavors”

RCU-preempt

Reader section:

 Marked by rcu_read_lock() and rcu_read_unlock() pair.

Preemption allowed in reader , blocking not allowed (unless RT patchset).

RCU Flavor Consolidation: Why? Reduce APIs

Problem:
1. Too many APIs for synchronization. Confusion over which one to use!

a. For preempt flavor: call_rcu() and synchronize_rcu().

b. For sched: call_rcu_sched() and synchronize_rcu_sched().

c. For bh flavor: call_rcu_bh() and synchronize_rcu_bh().

2. Duplication of RCU state machine for each flavor …

3. Too many GP threads.

Now after flavor consolidation: Just call_rcu() and synchronize_rcu().

RCU Flavor Consolidation: Why? Changes to rcu_state

Why?

● 3 -> 1 rcu_state structures.

● 3 -> 1 GP thread and state machines.

Advantages:

● Less resources!

● Less code!

Remember : an RCU reader taking a long time can delay a
grace period
CPU 0 CPU 1

/* This is start of an RCU reader! */
rcu_read_lock();
 /* Called after CPU 0’s preempt_disable() */
 synchronize_rcu();

/* This is end of an RCU reader! */
rcu_read_unlock();

 /* Executes only much later! */
 some_func();

Before consolidation: Grace periods were separated, for
example…
CPU 0 CPU 1

/* This is start of an RCU reader! */
preempt_disable();
 /* Called after CPU 0’s preempt_disable() */
 synchronize_rcu();

 /* Can exec before CPU 0 preempt_enable() */
 some_func();

/* This is end of an RCU reader! */
preempt_enable();

After consolidation: synchronize_rcu() has to wait

CPU 0 CPU 1

/* This is start of an RCU reader! */
preempt_disable();
 /* Called after CPU 0’s preempt_disable() */
 synchronize_rcu();

/* This is end of an RCU reader! */
preempt_enable();

 /* Executes only much later! */
 some_func();

rcuperf can prove it.

What does the rcuperf test do?

● Starts N readers and N writers on N CPUs

● Readers just do rcu_read_lock() + rcu_read_unlock() in a loop.

● Writers call and measure wall-clock time of synchronize_rcu() repeatedly.

What I did (HACK) : Modified test to busy loop for N ms on reserved CPU:
void reserved_thread() {

 preempt_disable();

 busy_loop_ms(N);

 preempt_enable();

}

What could be the expected Results?

RCU Flavor
Consolidation
Performance Changes

This is still within RCU
specification!

Also note that disabling
preemption for so long is most not
acceptable by most people
anyway.

RCU Flavor Consolidation

Notice that synchronize_rcu time was 2x the preempt_disable time, that’s cos:

 synchronize_rcu Wait synchronize_rcu Wait
 |<-------------------->| |--------------------|
 v v v v
<----------> <----------> <----------> <---------> <--------->
 GP GP GP GP GP

GP = long preempt disable duration

Consolidated RCU - The different cases to handle

Say RCU requested special help from the reader section unlock that is holding up a
GP for too long….

preempt_disable();

rcu_read_lock();

do_some_long_activity(); // TICK sets per-task ->need_qs bit

rcu_read_unlock(); // ... so need help from rcu_read_unlock();

preempt_enable();

RCU-preempt reader nested in RCU-sched due to
 preempt_disable()

Before:
preempt_disable();
rcu_read_lock();
do_some_long_activity();
rcu_read_unlock(); // Report QS ASAP
preempt_enable();

Now:
preempt_disable();
rcu_read_lock();
do_some_long_activity();
rcu_read_unlock();
 -> rcu_read_unlock_special(); // Defer the QS and set
 // bit & set PREEMPT_NEED_RESCHED
preempt_enable(); // Report the QS

Consolidated RCU - The
different cases to handle

RCU-preempt reader nested in RCU-sched due to
 local_irq_disable()
(This is a special case where previous reader requested
deferred special processing by setting ->deferred_qs bit)
Before:
local_irq_disable();
rcu_read_lock();
rcu_read_unlock()
 -> rcu_read_unlock_special(); // Report the QS
local_irq_enable();

Now:
local_irq_disable();
rcu_read_lock();
rcu_read_unlock();
 -> rcu_read_unlock_special(); // Defer the QS and set
 // bit & set PREEMPT_NEED_RESCHED

local_irq_enable(); // CANNOT Report the QS, still deferred.

Consolidated RCU -
The different cases
to handle

RCU-preempt reader nested in RCU-sched due to
 IRQ entry :
(This is a special case where previous reader requested
deferred special processing by setting ->deferred_qs bit)
Before:
/* hardirq entry */
rcu_read_lock();
rcu_read_unlock()
 -> rcu_read_unlock_special(); // Report the QS
/* hardirq exit */

Now:
/* hardirq entry */
rcu_read_lock();
do_some_long_activity();
rcu_read_unlock();
 -> rcu_read_unlock_special(); // Defer the QS and set

 // rcu_read_unlock_special.deferred_qs
 // bit & set TIF_NEED_RESCHED

/* hardirq exit */ // Report the QS

Consolidated RCU -
The different cases
to handle

RCU-preempt reader nested in RCU-bh

Before:
local_bh_disable(); /* or softirq entry */
rcu_read_lock();
do_some_long_activity();
rcu_read_unlock(); // Report QS ASAP
local_bh_enable(); /* or softirq exit */

Now:
local_bh_disable(); /* or softirq entry */
rcu_read_lock();
do_some_long_activity();
rcu_read_unlock();
 -> rcu_read_unlock_special(); // Defer the QS and set
 // bit & set PREEMPT_NEED_RESCHED
local_bh_enable(); /* or softirq exit */ // Report the QS

Consolidated RCU - The
different cases to handle

RCU-bh reader nested in RCU-preempt or
 RCU-sched

Before:
preempt_disable();
/* Interrupt arrives */
/* Raises softirq */
/* Interrupt exits */
__do_softirq();
 -> rcu_bh_qs(); /* Reports a BH QS */
preempt_enable();

Now:
preempt_disable();
/* Interrupt arrives */
/* Raises softirq */
/* Interrupt exits */
__do_softirq(); /* Do nothing -- preemption still disabled */
preempt_enable();

Consolidated RCU -
The different cases
to handle

Solution: In case of denial of attack, ksoftirqd’s loop will report QS.
No reader sections expected there:

See commit: d28139c4e967 ("rcu: Apply RCU-bh QSes to RCU-sched and
RCU-preempt when safe")

Consolidated RCU - The different cases to handle

Consolidated RCU - Fixing scheduler deadlocks...
The forbidden scheduler rule… This is NOT allowed (https://lwn.net/Articles/453002/)

“Thou shall not hold RQ/PI locks across rcu_read_unlock() if thou not holding it or
disabling IRQ across both rcu_read_lock() + rcu_read_unlock()”

IRQ
Disable section
(say due to rq/pi
lock)

Time

rcu_read_lock();

/* code */

rcu_read_unlock();

https://lwn.net/Articles/453002/

Consolidated RCU - Fixing scheduler deadlocks...

The forbidden scheduler rule… This is ALLOWED:

IRQ
Disable section
(say due to rq/pi
lock)

Time
IRQ
Disable section
(say due to rq/pi
lock)

Timercu_read_lock();

/* code */

rcu_read_unlock();

rcu_read_lock();

/* code */

rcu_read_unlock();

But we have a new problem… Consider case: future rcu_read_unlock_special() might be
called due to a previous one being deferred.

previous_reader()
{

rcu_read_lock();
do_something(); /* Preemption happened here (so need help from rcu_read_unlock_special. */
local_irq_disable(); /* Cannot be the scheduler as we discussed! */
do_something_else();
rcu_read_unlock(); // As IRQs are off, defer QS report but set deferred_qs bit in rcu_read_unlock_special
do_some_other_thing();
local_irq_enable();

}

current_reader() /* QS from previous_reader() is still deferred. */
{

local_irq_disable(); /* Might be the scheduler. */
do_whatever();
rcu_read_lock();
do_whatever_else();
rcu_read_unlock(); /* Must still defer reporting QS once again but safely! */
do_whatever_comes_to_mind();
local_irq_enable();

}

Consolidated RCU - Fixing scheduler deadlocks…

Consolidated RCU - Fixing scheduler deadlocks...

Fixed in commit: 23634eb (“rcu: Check for wakeup-safe conditions in rcu_read_unlock_special()”)

Solution: Intro rcu_read_unlock_special.b.deferred_qs bit. (Which is set in previous_reader() in previous example).

Raise softirq from _special() only when either of following are true:

● in_irq() (later changed to in_interrupt) - because ksoftirqd wake-up impossible.
● deferred_qs is set which happens in previous_reader() in previous example.

This makes the softirq raising not wake ksoftirqd thus avoiding a scheduler deadlock.

Made detailed notes on scheduler deadlocks:
https://people.kernel.org/joelfernandes/making-sense-of-scheduler-deadlocks-in-rcu

https://lwn.net/Articles/453002/

https://people.kernel.org/joelfernandes/making-sense-of-scheduler-deadlocks-in-rcu
https://lwn.net/Articles/453002/

Future work

● More Torture testing on arm64 hardware
● Re-design dynticks counters to keep simple
● List RCU checking updates
● RCU scheduler deadlock checking
● Reducing grace periods due to kfree_rcu().
● Make possible to not embed rcu_head in object
● More RCU testing, experiment with modeling etc.
● More systematic study of __rcu sparse checking.

Thank you!

● For questions, please email the list: rcu@vger.kernel.org

● Follow us on Twitter:

○ @paulmckrcu

○ @joel_linux

○ @boqun_feng

○ @srostedt

mailto:rcu@vger.kernel.org

