
AI: Support Vector Machines 1

AI: Support Vector Machines
Author: Joel Fernandes <joel@joelfernandes.org> Last updated: June 25, 2023.

Before reading this article, make sure to read my other article on "AI: Vector Basics", as
an understanding of vectors is a prerequisite.

Weights and biases of an SVM
In a 2 dimensional (or really N-d) input data set, an SVM can be used to partition the
data set using a “hyper plane”. For 2-d, this hyperplane becomes a line.

That line (also known as a decision boundary) can actually be represented by the
equation:

w1*x + w2*y + w0 = 0

Where [w1, w2] is the weight vector and w0 is the bias.

If w0 = 0 (no bias) and [w1, w2] = [2, 3] ; then it looks like this.

AI: Support Vector Machines 2

Note that the weight vector is itself the line. To draw the weight vector, start from the
origin and make the vector (arrow) point towards [w1, w2] .

The weight vector is always perpendicular to the decision boundary as a rule.

To draw the decision boundary, we can take the earlier equation for the decision
boundary and transform it to the form y = mx + c to calculate the slope and the y
intercept.

We get: y = (-w1/w2) * x - w0/w2

Plugging in the earlier weights, we get the blue line.

Now, so far w0 has been 0. If we add some bias, the decision boundary shifts.

As an example:

As you can see, the decision boundary no longer passes through the origin, as some
bias has been added. However, it is still perpendicular to the weight vector.

AI: Support Vector Machines 3

In conclusion, the weight vector and the bias together determine the decision-boundary
line.

Mathematical partitioning of dataset using hyperplane / decision
boundary
The earlier equation of the hyperplane in 2d space was a line: w1*x + w2*y + w0 = 0

Let us see how to intuitively check which side of this line does a random point (x, y) fall
on.

If, for any point in the dataset (represented by x, y), w1*x + w2*y + w0 is less than 0, then
that point falls on one side of the line. If it is negative, it falls on the other side.

To see why, recall that by adjusting the bias w0 , we were able to shift the decision
boundary while still keeping it perpendicular to the weight vector.

Now consider an imaginary line passing through that random point (x, y). Assume that
this line is perpendicular to the weight vector just like the decision boundary. This
imaginary line can just be represented as a decision boundary with an adjusted bias.
Let us see why.

The equation of this imaginary line becomes w1*x + w2*y + w0 - i0 = 0 , where i0 is the
adjustment to the bias for this line.

This becomes w1*x + w2*y + w0 = i0

From the earlier example with bias of -10 , we know that if i0 is negative, then it means
such a line is parallel to the decision boundary and is shifted to the upper side. And if it
is negative, it falls on the lower side. Thus, by just checking the polarity of i0 , we can
determine which side of the decision boundary it falls on. Obviously, if i0 is 0, the
imaginary line is the decision boundary itself.

To get i0 , we simply plugin (x, y) into the decision boundary equation.

We can visually show this as below:

AI: Support Vector Machines 4

Compact hyperplane representation in N-dimensions
In an N-dimensional space, the hyperplane can be represented by increasing the
dimensions of the weight vector, lets call this weight vector a capitalized W.

The hyperplane decision boundary can represented as the dot product.

In 2d, the hyperplane is a line as mentioned earlier:

w1*x + w2*y + w0 = 0

or

[w1, w2] . [x, y] + w0 = 0

or

Transpose([w1, w2]) * [x, y] + w0 = 0

In an N-dimensional space, consider the n dimensional input as [x1, x2,… xn] as vector
X .

So we get the hyperplane decision boundary equation in N-dimensions as: W . X + w0 =
0 .

AI: Support Vector Machines 5

As can be seen, W . X is 0 (give or take a bias). This is possible only if W is
perpendicular to the decision boundary because the dot product of 2 vectors is 0 only if
they’re perpendicular to each other.

A · B = |A| |B| cos(θ)

where |A| and |B| are the magnitudes of the vectors, and θ is the angle between them.

When the dot product is zero, it means that the cosine of the angle between the vectors
is zero. The only way for the cosine of an angle to be zero is if the angle itself is 90
degrees.

SVM support vectors
Support vectors are the data points closest to the decision boundary in an SVM. They
play a crucial role in determining the decision boundary and the margin. The margin is
the distance between the decision boundary and the closest data points from both
classes.

Diagram courtesy:

Support Vector Machine(SVM): A Complete guide for beginners

Support Vector Machine or SVM, is a powerful supervised algorithm
that works best on smaller datasets but on complex ones.

https://www.google.com/url?sa=i&url=https://www.analyticsvidhya.c
om/blog/2021/10/support-vector-machinessvm-a-complete-guide-for-be
ginners/&psig=AOvVaw1pyCB_CC-HIjsmPPhIo68d&ust=16871955881

https://www.google.com/url?sa=i&url=https://www.analyticsvidhya.com/blog/2021/10/support-vector-machinessvm-a-complete-guide-for-beginners/&psig=AOvVaw1pyCB_CC-HIjsmPPhIo68d&ust=1687195588179000&source=images&cd=vfe&ved=0CBIQjhxqFwoTCLiOtsarzf8CFQAAAAAdAAAAABAE

AI: Support Vector Machines 6

79000&source=images&cd=vfe&ved=0CBIQjhxqFwoTCLiOtsarzf8CFQ
AAAAAdAAAAABAE

The “maximum margin hyperplane” is the decision boundary and the positive and
negative hyperplane are called the support vectors.

After the SVM has been trained, the decision boundary lies at an equal distance from
the positive and negative hyperplane and is a boundary that guarantees the maximum
distance between the 2 support vectors. Any line that is partitioning the data but not
result in a maximum distance is not an optimal decision boundary. A maximal distance
ensures a more accurate and less erroneous model. The W vector and bias b are
constantly adjusted till that is achieved.

Mathematically speaking, the positive and negative hyperplanes are basically the
decision boundary adjusted with a bias. Because the decision boundary is at the exact
distance from both these new hyperplanes, the bias is the same but just reversed.

So in the equation: w1*x + w2*y + w0 = i0 , i0 might be 5 for one hyperplane and -5 for
the other. But their absolute values will always be equal due to their decision-boundary-
equidistance.

In fact to make the math easier, the 2 support vector hyperplanes can just be written as:

w1*x + w2*y + w0 = 1

w1*x + w2*y + w0 = -1

This is achieved by just dividing the weights and biases on the LHS of the equation by
i0 .

Such division as no effect on the decision boundary at all. Why?

Because, recall the decision boundary equation is:

w1*x + w2*y + w0 = 0

If we divide the LHS and RHS by i0 , the result is still equal to 0 and the decision
boundary does not move at all. The equation does not change. In fact, from earlier we
know that translating this to the form y = mx + c , we know that the slope of this like is -
w1/w2 and the Y-intercept is -w0/w2 . So the division of weights and biases by i0 has no
effect on the decision boundary line as these are just ratios.

Summarizing, in a 2d SVM system that is fully trained,

The decision boundary is represented as: w1*x + w2*y + w0 = 0

And the support vectors are:

Positive hyperplane: w1*x + w2*y + w0 = 1

https://www.google.com/url?sa=i&url=https://www.analyticsvidhya.com/blog/2021/10/support-vector-machinessvm-a-complete-guide-for-beginners/&psig=AOvVaw1pyCB_CC-HIjsmPPhIo68d&ust=1687195588179000&source=images&cd=vfe&ved=0CBIQjhxqFwoTCLiOtsarzf8CFQAAAAAdAAAAABAE

AI: Support Vector Machines 7

Negative hyperplane: w1*x + w2*y + w0 = -1

From what we know about biases, it is easy to see that:

All the points outside the margin, on the positive side of hyperplane is: w1*x + w2*y + w0
>= 1

All the points outside the margin, on the negative side of hyperplane is: w1*x + w2*y + w0
<= -1

In these equations, we can represent [w1, w2] as the weight vector W and the point [x,
y] as an input vector X . Let us represent the correct classification for a point as a
scalar Y . And the bias b is 1 - w0 .

Plugging all this into the earlier equations, we can write a single equation for all points
outside the margin as:

Y * (W . X) + b >= 1

Maximizing of the distance between the support
vectors
An optimal SVM draws its decision boundary such that the distance d between the
positive and negative hyperplanes are maximum.

💡 Note that maximizing the distance can be done as long as the earlier
equation from earlier is satisfied:
This is also known as Hard SVM, because no points are allowed to lie in the
margin. Later we will see how to relax that so we can widen d even more
while tolerating somethings within the margin.

As we know, both the weight vector W and the bias b decide the position and
orientation of the decision boundary.

The distance d constantly changes as decision boundaries are redrawn during training
while W and b are adjusted. It is easy to see that 2 different decision boundaries might
both linearly separate 2 classes of points, however the distance d between their
support vectors may well be different. Depending on how the decision boundary is
drawn, the support vectors might be closer or further apart from each other.

AI: Support Vector Machines 8

💡 I made a mistake drawing W here, it should actually start at the origin.
Further, it need not necessarily intersect the hyper planes.

In order to obtain the distance d , 2 points are selected on each support vector
(hyperplane) and a new vector is drawn between them. In the figure, a new vector V1-
V2 is generated from the vectors V1 and V2 (orange line). See my other article on that
concept. This new vector is then projected onto the weight vector W to find d .

For this, the dot product comes in handy! We can use the dot product between W and
V1-V2` to assist in figuring out d .

The formula for the projection of a vector A onto B is:

Magnitude of Proj_B(A) = |A.B| / |B|

See my article on Vector Basics for an explanation of that.

Thus, d = ((V1-V2).W) / |W|

AI: Support Vector Machines 9

This simplifies to d = 2 / |W| . Watch this youtube video or this image from that video
for an explanation of the simplification:

Thus the goal to maximize d is to minimize |W| . However, as mentioned earlier, d can
be increased as long as there are no points in the training data within the margin. In
other words, maximization of d has to also keep the equation satisfied at all costs.

Allowing points within the margin
d can be maximized even more if we allow some training data to be ignored if they fall
within the margin between the support vectors. Such points will have no influence of the
weights W or bias b and thus no influence on the decision boundary’s position or
orientation. This is also known as soft SVM and lets the SVM tolerate more noise. It
prevents over-fitting as well, as these noisy points within the margin have no influence
on the decision boundary during training.

The following whiteboard shot from the above youtube video shows the softSVN
equations.

1. The misclassified points are shown circled on either side of the decision boundary
marked as pi. The support vectors are shows as pi+ and pi- and are between them

https://www.youtube.com/watch?v=yCAlHPDgWtM

AI: Support Vector Machines 10

is the margin.

2. f(x) is the function (distance) we want to maximize. Such maximization can also be
seen as “minimization” of margin error. After all, noise within the margin cannot alter
a wider margin. f(x) = 2 / |w| .

3. Thus to reduce margin error, we want to minimize 1/f(x). That’s what the argmin
term is in the whiteboard.

4. With soft SVM, there’s another term. Its called Zeta and is the “Classification error”.
Each misclassified point adds a certain error. Together, these terms form the total
SVM error or loss function. The goal during training is to minimize this loss.

5. The term C tells us how much does the classification error matter. A large value of
C implies that misclassifications caus a lot of loss, the model tends to become a
“harder” SVM.

The following screenshot shows the effect of changing C on an SVM model generated
by the scikit library.

Whiteboard screenshot from https://www.youtube.com/watch?v=yCAlHPDgWtM

https://www.youtube.com/watch?v=yCAlHPDgWtM

AI: Support Vector Machines 11

With C=1000 , we get a hard
SVM:

Reducing C to below 1 starts
showing the SVM becoming
softer. Here it is with C=0.1 .

Further reducing C shows
more points added to within
the margin. Here’s C=0.01 .

Hard SVM due to a large C. C=1000.

Soft SVM with C=0.1

AI: Support Vector Machines 12

💡 Notice how the orientation (angle) of the
decision boundary changes as the margin
changes. This is because the points that
were previously affecting the decision
boundary are now within the decision
boundary itself and are being ignored.
With C = 0.002 , we get an almost flat
decision boundary:

💡 Note that during inference, points falling within the margin are still classified
depending on which side of the decision boundary those points fall under.

The C hyperparameter changes the importance of not having samples within the
margin. Lowering C modifies the loss function, thus telling the training phase that it is
more important to maximize the margin width d than to minimize the zheta errors. Thus
the training phase ends up having more and more points within the margin.

Conclusion

Soft SVM with C=0.01

SVM with C=0.02

AI: Support Vector Machines 13

This article just scratched the surface on getting an intuitive understanding of 2d SVM.
There’s so much more to cover, such as kernels and so forth. However this article
should lay out the basic intuitive knowledge to serve more advanced SVM concepts.

