
Problem
Hyperthreading has been disabled on many Intel processors due to vulnerabilities such as RIDL
and ZombieLoad. While there are mitigations proposed to protect user-mode processes by
making the OS scheduler aware of what is trusted and what is not, there is no known protection
of processes in kernel-mode. The OS kernel can contain sensitive data that an attacker can leak
on vulnerable processors. This invention addresses the problem.

Related Technology
● Core-scheduling are changes to scheduler that protect user-mode processes from

attack. Article: https://lwn.net/Articles/780703/.

Inventions

● The invention uses per-cpu and core-wide counters to track the state of when the whole
core enters and exits the kernel. In the below example, we have 4 Hardware Threads
(HT) per-core. HT0 and HT3 are making system calls. HT1 is in an IRQ. All these 3 HTs
are in the kernel for these reasons. By making use of a per-cpu counter, we accurately
detect when the core as a whole is in the kernel or not. We then know the exact points in
time that we need core-wide protection from attackers.

https://lwn.net/Articles/780703/


● The invention sends an inter-processor interrupt (IPI) when the core enters the
unsafe state. The IPI is sent from the HT responsible for entering the core-wide
unsafe state. The receiver of the IPI will be forced to busy-wait until the sender
exits the unsafe state. In the below example, HT1 enters a system call and sends
an IPI to HT0 which waits until HT1’s completion of the system call.

● The invention optimizes the sending of IPIs thus reducing overhead. It does so by
making sure that only the outer-most entry into the core-wide unsafe state sends
an IPI.

● The invention avoids sending IPIs at all in the case where the Untrusted task
itself entered the core-wide unsafe state, while all other CPUs were idle. For
example, in the below diagram HT0 does send any IPIs to other HTs which are
idle. Further, HT0 waits for other IRQs that started after it without requiring any
IPIs through out the process.



● By design the invention ensures that soft-interrupts are also protected as soft
interrupts nest within IRQs and system calls.

● The invention modifies the idle loop to enter and exit unsafe sections. This
ensures that we exit the core-wide IRQ state as soon as possible, and that the
untrusted process does not wait for a long time.

●



● The invention ensures that waiting in the schedule-loop is not needed when
switching from a privileged to an unprivileged task. For example, the following
waiting is eliminated by design. Furthermore, the invention avoids sending any
IPIs if the receiver HT is in trusted user-mode context such as system daemons,
or is idle. As illustrated below:


