
Introduction to Embedded
Linux

Joel Fernandes
www.LinuxInternals.org
joel@linuxinternals.org

LinuxInternals.org 1

© LinuxInternals.org CC-BY-SA 3.0

About me
⚫ Working at Amazon’s R&D group (Lab126)

⚫ Embedded Linux for work and hobby

⚫ OS Internals: Gives a complete picture

⚫ Linux vs proprietary OS:
⚫ Picked-up Linux many years ago thanks to easy availability of

source code and documentation

LinuxInternals.org 2

Quick stats about meetup

⚫ First meetup early december, this ones a repeat

⚫ 30% of RSVPs came in on the last 2 days

⚫ 50+ new members in the last 2 weeks

⚫ Still thinking about venue, but this one’s better.

LinuxInternals.org 3

What’s Embedded Linux?
Some wikipedia definitions..

LinuxInternals.org 4

Embedded System:
An embedded system is a computer system with a dedicated function within a larger
mechanical or electrical system, often with real-time computing constraints. It is
embedded as part of a complete device often including hardware and mechanical
parts. Embedded systems control many devices in common use today.

Linux on Embedded:
Operating systems based on the Linux kernel are used in embedded systems such as
consumer electronics (i.e. set-top boxes, smart TVs, in-vehicle infotainment (IVI),
networking equipment (such as wireless routers), machine control, industrial
automation, navigation equipment, spacecraft flight software, and medical instruments
in general).

System On Chip (SoC) Architecture

LinuxInternals.org 5

System On Chip (SoC)

I2c controller

USB controller

MMC controller

ARM
Core

Memory
controller

DRAM

in
te

rc
on

ne
ct

SRAM

LinuxInternals.org 6

Important Software Components

 Boot loader (SPL + U-boot)

Boot ROM

Linux Kernel

File System

Bootloaders
⚫ Role: Initializes the system enough to load the OS and load

it.

⚫ Main Responsibilities:
⚫ Where to load into? -> DRAM (can be DDR2/3/4 etc)
⚫ Initialize hardware: Memory controller, clocks for peripherals.

⚫ Where to load from?
⚫ Code to load from various media (Flash, USB, network, UART

etc.)

LinuxInternals.org 7

Bootloaders
⚫ Other features:
⚫ Security: Loading trusted software
⚫ Flashing the OS onto flash memory
⚫ Diagnostics: Debugging/testing hardware without OS

LinuxInternals.org 8

LinuxInternals.org 9

SRAM (internal)

DRAM (external)

Bigger size,
cheaper Slower

Access

Bootstrapping..

LinuxInternals.org 10

© SysPlay Workshops

SPL code

SRAM

DRAM

Kernel

DTB

U-boot

 Ramdisk

Example: U-boot

LinuxInternals.org 11

ROM initializes core, clocks,
internal RAM.

Loads SPL (second program
loader) into internal memory.

An SPL is a tiny bootloader
that’s small enough to fit
into internal RAM (just

enough code)
Initializes DDR and loads

U-boot into it

U-boot has
Multiple-drivers to load

the Kernel from any
number of mediums into

the DDR.

Linux Kernel Boots and
initializes the rest of the

hardware.

Example: U-boot

LinuxInternals.org 12

Boot ROM (or First-program loader):

• First program that executes from Read-only memory.

• ROM memory is typically inside an SoC and can be NOR
flash.

• May read boot pins on an SoC to determine where to boot
SPL from.

Example: U-boot

LinuxInternals.org 13

SPL (Second-program loader):

• Runs from internal RAM on the SoC

• Its kind of a mini U-boot with just enough code to load from
1-device (such as USB or network or Flash)

• Also called X-loader or pre-loader in some platforms

• Set up basic clocks and power

• Configures DRAM (DDR2, DDR3 etc..) memory

• Load the full-fledged U-Boot into DRAM

• Switch control to U-Boot code

Example: U-boot
U-boot (The second program which just got loaded)

⚫ Executes from DRAM (external memory)

⚫ Contains lots of drivers in a single binary

⚫ Has a scriptable environment
⚫ Can pass configuration scripts to it for boot flow

⚫ Uses Virtual Memory: Initializes the TLB, MMU and Caches
⚫ Required for Caching to work. DCACHE speeds loading kernel

⚫ Sets up an environment for and Loads Linux kernel

LinuxInternals.org 14

Quiz
⚫ Can SPL load the Linux kernel directly?

⚫ Ans: Yes! Why not. But not done very often because you’d lose U-boot’s
flexibility. SPL has a feature called “Falcon Mode”

LinuxInternals.org 15

Example: UEFI (BIOS)

LinuxInternals.org 16

Device-Tree
⚫ The Device Tree is a data structure for describing hardware.

Rather than hard coding every detail of a device into an operating
system, many aspect of the hardware can be described in a data
structure that is passed to the operating system at boot time.

⚫ Single-kernel as much as possible philosophy..

⚫ Data structure is stored in binary form as a blob (.dtb)
⚫ Can be packaged along with the kernel binary (Android does this)
⚫ Can be copied to memory at a certain location and the pointer of it

passed to the kernel as a parameter. This is how U-boot typically
does it.

LinuxInternals.org 17

.

Device-Tree basic format

LinuxInternals.org 18

/ {
 node1 {
 a-string-property = "A string";
 a-string-list-property = "first string", "second string";
 a-binary-property = [0x01 0x23 0x34 0x56];
 a-cell-property = <0xbeef 123 0xabcd> // 32-bit uints
 child-node1 {
 first-child-property;
 second-child-property = <1>;
 };
};

'Cells' are 32 bit unsigned integers delimited by angle brackets:
cell-property = <0xbeef 123 0xabcd1234>

binary data is delimited with square brackets:
binary-property = [0x01 0x23 0x45 0x67];

Data of differing representations can be concatenated together using a
comma:
mixed-property = "a string", [0x01 0x23 0x45 0x67], <0x12345678>;

Device Tree example: OMAP5 uEVM

LinuxInternals.org 19

• Describe the OMAP5 uEVM board.

• Describe its periperals, we will be going over:

• CPU description
• Interrupt Controller
• Timers
• I2C devices

Device Tree: OMAP5 uEVM

LinuxInternals.org 20

Device Tree: OMAP5 uEVM

LinuxInternals.org 21

ARM Cortex
A-15

ARM Cortex
A-15

Generic Interrupt Controller (GIC)

CPU 1
Timer x 4

CPU 2
Timer x 4

Microprocessor Unit (MPU)

I2c or other
controllers

SPI

PPI PPI

Device Tree: OMAP5 uEVM

LinuxInternals.org 22

A small primer on Timers on Cortex A-15

• In cortex-a15, each core has 4 timers:

• Secure Physical Timer
• Used in Secure mode

• Non-secure Physical Timer
• Most commonly used

• Virtual Timer

• Hypervisor Timer
• Used in Hypervisor mode

• The CPUs have one generic timer block per CPU.
• The generic timer block contains 4 timers (there are 2 such blocks in our example, one for

each A-15 core)

Device Tree: OMAP5 uEVM

LinuxInternals.org 23

A small primer on GIC (Generic Interrupt Controller)
• Interrupt Prioritization
• Interrupt Routing

3 types of interrupts

• SPI (Shared peripheral interrupt) – can be serviced by any core
• Peripherals outside the core like i2c, usb, gpio etc.
• We can set affinity of each interrupt source (force to a CPU).

• PPI (Private peripheral interrupt) – sent to only the core it belongs to
• 7 PPIs per core

• Each core has 4 timers so 4 timer PPIs per core)

• SGI (Software generated interrupts)
• 16 per core (first 16 interrupt lines per core)
• Used for scheduling, task-migrations, inter processor interrupts

Device Tree: OMAP5 uEVM

LinuxInternals.org 24

Describe the board first (OMAP5 uEVM):

/* File: arch/arm/boot/dts/omap5-uevm.dts */

/dts-v1/;

/ {
 model = "TI OMAP5 uEVM board";
 compatible = "ti,omap5-uevm”, "ti,omap5"; /* identify the machine */

From Kernel Documentation:

The 'compatible' property contains a sorted list of strings starting
with the exact name of the machine, followed by an optional list of
boards it is compatible with sorted from most compatible to least. For
example, the root compatible properties for the TI BeagleBoard and its
successor, the BeagleBoard xM board might look like, respectively:

 compatible = "ti,omap3-beagleboard", "ti,omap3450", "ti,omap3";
 compatible = "ti,omap3-beagleboard-xm", "ti,omap3450", "ti,omap3";

Where "ti,omap3-beagleboard-xm" specifies the exact model, it also
claims that it compatible with the OMAP 3450 SoC, and the omap3 family
of SoCs in general. You'll notice that the list is sorted from most
specific (exact board) to least specific (SoC family).

Compatible Property

LinuxInternals.org 25

From devicetree.org:

Every node in the tree that represents a device is required to have the
compatible property. compatible is the key an operating system uses to decide
which device driver to bind to a device.
compatible is a list of strings.

 / {
 compatible = "ti,omap5-uevm”, "ti,omap5”;
 timer {

 compatible = "arm,armv8-timer";
 interrupts = <GIC_PPI 13 IRQ_TYPE_LEVEL_LOW)>,

 ...
 };

};

Device Tree: OMAP5 uEVM

LinuxInternals.org 26

 cpus {
 #address-cells = <1>;
 #size-cells = <0>;

 cpu@0 {
 compatible = "arm,cortex-a15";
 device_type = "cpu";
 reg = <0x0>; /* CPU MPIDR match */

 operating-points = <
 /* kHz uV */
 1000000 1060000
 1500000 1250000
 >;

 clocks = <&dpll_mpu_ck>;
 clock-names = "cpu";
 };
 cpu@1 {
 compatible = "arm,cortex-a15";
 device_type = "cpu";
 reg = <0x1>;
 };
 };

Describe the CPUs:

Device Tree: OMAP5 uEVM

LinuxInternals.org 27

Describe the Interrupt Controller (GIC):

 gic: interrupt-controller@48211000 {
 compatible = "arm,cortex-a15-gic";

 /* Identifies the node as an interrupt controller */
 interrupt-controller;

 /* num of cells needed to encode an interrupt source */
 #interrupt-cells = <3>;

 /* These are portions of memory in the physical address space,
 which are used to program the GIC */

 reg = <0x48211000 0x1000>,
 <0x48212000 0x1000>,
 <0x48214000 0x2000>,
 <0x48216000 0x2000>;
 };

Device Tree: OMAP5 uEVM

LinuxInternals.org 28

Finally, lets describe the Per-CPU timers.

Since its PPI, each of the 4 timer’s interrupt number is the same across all CPUs. For ex, both secure
timers, one for each a15 core has same IRQ number – 13 for both cores. (Kernel documentation on
next slide)

 timer {
 compatible = "arm,armv7-timer";

 /* Interrupt list for secure, non-secure, virtual and
 hypervisor timers */

 interrupts = <GIC_PPI 13 (IRQ_TYPE_LEVEL_LOW)>,
 <GIC_PPI 14 (IRQ_TYPE_LEVEL_LOW)>,
 <GIC_PPI 11 (IRQ_TYPE_LEVEL_LOW)>,
 <GIC_PPI 10 (IRQ_TYPE_LEVEL_LOW)>;
 interrupt-parent = <&gic>;
 };

LinuxInternals.org 29

Describing the Interrupt controller:

 The 1st cell is the interrupt type; 0 for SPI interrupts, 1 for PPI
 interrupts.

 The 2nd cell contains the interrupt number for the interrupt type.
 SPI interrupts are in the range [0-987]. PPI interrupts are in the
 range [0-15].

 The 3rd cell is the flags, encoded as follows:
 bits[3:0] trigger type and level flags.
 1 = low-to-high edge triggered
 2 = high-to-low edge triggered (invalid for SPIs)
 4 = active high level-sensitive
 8 = active low level-sensitive (invalid for SPIs).
 bits[15:8] PPI interrupt cpu mask. Each bit corresponds to each of
 the 8 possible cpus attached to the GIC. A bit set to '1' indicated
 the interrupt is wired to that CPU. Only valid for PPI interrupts.
 Also note that the configurability of PPI interrupts is IMPLEMENTATION
 DEFINED and as such not guaranteed to be present (most SoC available
 in 2014 seem to ignore the setting of this flag and use the hardware
 default value).

Quiz 1
⚫ Is device tree required for devices that can identify

themselves at boot/run time?

⚫ Ans: No! Some devices like USB and PCI identify
themselves through unique identifiers. For such devices,
device tree nodes are not required.

LinuxInternals.org 30

Quiz 2
⚫ I have one kernel and 2 different DTBs available. Will they

work on 2 different systems (such as an OMAP5 and a
beagleboard)?

⚫ Yes! The DTBs should account for the differences in
hardware.

LinuxInternals.org 31

Device-Tree Example: ARM Juno

LinuxInternals.org 32

.
⚫ Cortex A-57 cluster (x2 CPUs), 1.1GHz
⚫ L2: 2MB, L1: 48KB, I-cache 32KB

⚫ Cortex A-53 cluster (x1 CPUs), 850MHz
⚫ L2: 2MB, L1: 32KB, No I-Cache ?

⚫ Describe other hardware…

Device-Tree: ARM Juno

LinuxInternals.org 33

Device-Tree Example: ARM Juno

LinuxInternals.org 34

.

Device-Tree: ARM Juno
⚫ First describe the machine:

LinuxInternals.org 35

• Start with the root node “/”
• model: name of the board
• compatible: the board is compatible with kernel that supports

“arm,juno” and “arm,vexpress” machines.

(Confirm the below from dts and DT documentation)

/* File: arch/arm64/boot/dts/arm-juno.dts */

/ {
 model = "ARM Juno development board (r0)";
 compatible = "arm,juno", "arm,vexpress”;

LinuxInternals.org 36

 cpus {
 #address-cells = <2>; // length of addr field
 #size-cells = <0>; // length of size field

 A57_0: cpu@0 {
 compatible = "arm,cortex-a57","arm,armv8";
 reg = <0x0 0x0>; // 64-bit ID (compared to MPIDR)

 device_type = "cpu";
 enable-method = "psci”;
 next-level-cache = <&A57_L2>;
 };

 A57_1: cpu@1 {
 compatible = "arm,cortex-a57","arm,armv8";
 reg = <0x0 0x1>;
 device_type = "cpu";
 enable-method = "psci";
 next-level-cache = <&A57_L2>;
 };

 A53_0: cpu@100 {
 compatible = "arm,cortex-a53","arm,armv8";
 reg = <0x0 0x100>;
 device_type = "cpu";
 enable-method = "psci";
 next-level-cache = <&A53_L2>;
 };

 A53_1: cpu@101 {
 compatible = "arm,cortex-a53","arm,armv8";
 reg = <0x0 0x101>;
 device_type = "cpu";
 enable-method = "psci";
 next-level-cache = <&A53_L2>;

 A53_2: cpu@102 {
 compatible = "arm,cortex-a53","arm,armv8";
 reg = <0x0 0x102>;
 device_type = "cpu";
 enable-method = "psci";
 next-level-cache = <&A53_L2>;
 };

 A53_3: cpu@103 {
 compatible = "arm,cortex-a53","arm,armv8";
 reg = <0x0 0x103>;
 device_type = "cpu";
 enable-method = "psci";
 next-level-cache = <&A53_L2>;
 };

 A57_L2: l2-cache0 {
 compatible = "cache";
 };

 A53_L2: l2-cache1 {
 compatible = "cache";
 };
 };

Describing the CPUS:

LinuxInternals.org 37

Describing the Interrupt controller:

 gic: interrupt-controller@2c010000 {
 compatible = "arm,gic-400", "arm,cortex-a15-gic";
 reg = <0x0 0x2c010000 0 0x1000>,
 <0x0 0x2c02f000 0 0x2000>,
 <0x0 0x2c04f000 0 0x2000>,
 <0x0 0x2c06f000 0 0x2000>;
 ……
};

Describing the timers:
 timer {
 compatible = "arm,armv8-timer";
 interrupts = <GIC_PPI 13 IRQ_TYPE_LEVEL_LOW)>,
 <GIC_PPI 14 IRQ_TYPE_LEVEL_LOW>,
 <GIC_PPI 11 IRQ_TYPE_LEVEL_LOW>,
 <GIC_PPI 10 IRQ_TYPE_LEVEL_LOW>;
 /* See next slide for interrupt documentation */
 };

LinuxInternals.org 38

Describing other hardware: I2C

 i2c@7ffa0000 {
 compatible = "snps,designware-i2c";
 reg = <0x0 0x7ffa0000 0x0 0x1000>;

/* Describe how to identify child nodes */
 #address-cells = <1>; // all i2c address are 32-bit
 #size-cells = <0>; // no length field required

 interrupts = <GIC_SPI 104 IRQ_TYPE_LEVEL_HIGH>;
 clock-frequency = <400000>;
 clocks = <&soc_smc50mhz>;

 dvi0: dvi-transmitter@70 { // i2c slave 1
 compatible = "nxp,tda998x";
 reg = <0x70>; // EDID address
 };

 dvi1: dvi-transmitter@71 { // i2c slave 2
 compatible = "nxp,tda998x";
 reg = <0x71>;
 };
 };

Basics of Device Drivers
⚫ Kernel frameworks (common-code)

⚫ Device/Driver model

⚫ Platform bus

LinuxInternals.org 39

Kernel Frameworks

LinuxInternals.org 40

In Yellow are frameworks for different type of
drivers that implement common functionality.

© FreeElectrons, CC-BY-SA 3.0

Device/Driver model

LinuxInternals.org 41

• Since 2.6 kernel, Linux has a unified device and driver model.
• Instead of different ad-hoc mechanisms in each subsystem, the device model

unifies the vision of the devices, drivers, their organization and relationships.
• Lesser code duplication, provides common facilities and more coherency in the

code organization.

• Defines base structure types:
• struct device
• struct driver
• struct bus type.

• sysfs filesystem shows all these, mounted under /sys

Example: USB device driver

LinuxInternals.org 42

 Processor

USB
Adapter

(Host Controller)

USB device (like
printer or flash)

USB device (like
printer or flash)

USB
Adapter

(Host Controller)

Framework, drivers and devices

LinuxInternals.org 43
© FreeElectrons, CC-BY-SA 3.0

1. USB adapter drivers
Register with USB core.

2. USB device drivers register
with USB core, like printer driver

3. When devices
are detected,
USB core binds them to
USB drivers.

Concept of a Bus

LinuxInternals.org 44

• Most important element of the device/driver model

• Different drivers register a bus_type struct with driver core
• USB
• PCI
• I2C
• SPI
• MMC
etc..

• For each bus, the driver core will match devices and drivers

USB core registers with Linux as a “bus”

LinuxInternals.org 45

// File: drivers/usb/core/usb.c

struct bus_type usb_bus_type = {
 .name = "usb",
 .match = usb_device_match,
 .uevent = usb_uevent,
};

static int __init usb_init() {
...

 retval = bus_register(&usb_bus_type);
...

}

USB host controllers (aka adapters) register with core

LinuxInternals.org 46

/*
 * File: drivers/usb/chipidea/host.c
 */

static int host_start(struct ci_hdrc *ci)
{

struct usb_hcd *hcd;
...

 hcd->rsrc_start = ci->hw_bank.phys;
 hcd->rsrc_len = ci->hw_bank.size;
 hcd->regs = ci->hw_bank.abs;
 hcd->has_tt = 1;

...
ret = usb_add_hcd(hcd, 0, 0);
...

}

A USB driver registering with USB core

LinuxInternals.org 47

/* table of devices that work with this driver */
static const struct usb_device_id id_table[] = {
 { USB_DEVICE(0x0fc5, 0x1223) },
 { USB_DEVICE(0x1d34, 0x0004) },
 { USB_DEVICE(0x1d34, 0x000a) },
 { USB_DEVICE(0x1294, 0x1320) },
 { },
};

static struct usb_driver led_driver = {
 .name = "usbled",
 .probe = led_probe,
 .disconnect = led_disconnect,
 .id_table = id_table,
};

usb_register(&led_driver)

When a USB adapter driver notifies the USB core of a new device,
The USB core binds the new device with the driver based on the id_table

Example of USB driver probing

LinuxInternals.org 48

© FreeElectrons, CC-BY-SA 3.0

Example of USB driver probing

LinuxInternals.org 49
© FreeElectrons, CC-BY-SA 3.0

Example of USB driver probing

LinuxInternals.org 50
© FreeElectrons, CC-BY-SA 3.0

Another example: i2c device drivers

LinuxInternals.org 51

Processor

I2c controller Temperature
Sensor

Audio
Codec

I2c bus

Another example: i2c device drivers

LinuxInternals.org 52

I2c core (i2c bus)

I2c controller
driver

i2c devices in device
tree

Driver core (Bus architecture)

I2c device driver
(temperature sensor

driver)

I2c device driver
(codec driver)

I2c devices are
registered onto
the bus after
parsing Device
Tree.

Another example: i2c core registers as a “BUS”

LinuxInternals.org 53

struct bus_type i2c_bus_type = {
.name = "i2c",
.match = i2c_device_match,
.probe = i2c_device_probe,
.remove = i2c_device_remove,
.shutdown = i2c_device_shutdown,
.pm = &i2c_device_pm_ops,

};
EXPORT_SYMBOL_GPL(i2c_bus_type);

static int __init i2c_init(void)
{

int retval;
retval = bus_register(&i2c_bus_type);
...

}

/* File: drivers/i2c/i2c-core.c */

i2c device drivers register with i2c core

LinuxInternals.org 54

/* File: drives/hwmon/tmp102.c */

static const struct i2c_device_id tmp102_id[] = {
{ "tmp102", 0 },
{ }

};

static struct i2c_driver tmp102_driver = {
.driver.name= DRIVER_NAME,
.driver.pm = TMP102_DEV_PM_OPS,
.probe = tmp102_probe,
.remove = tmp102_remove,
.id_table = tmp102_id,

};

module_i2c_driver(tmp102_driver); /* Register with i2c core */

I2c adapter driver registers with the i2c core

LinuxInternals.org 55

/* File: drivers/busses/i2c/i2c-omap.c */

static const struct i2c_algorithm omap_i2c_algo = {
.master_xfer= omap_i2c_xfer, // send/receive data
.functionality = omap_i2c_func, // what the adapter supports

};

int omap_i2c_probe(struct platform_device *pdev) {
...
adap->owner = THIS_MODULE;
strlcpy(adap->name, "OMAP I2C adapter", sizeof(adap->name));
adap->algo = &omap_i2c_algo;

/* i2c device drivers may be active on return from add_adapter() */
adap->nr = pdev->id;
r = i2c_add_numbered_adapter(adap);
...

}

i2c devices are detected through Device Tree

LinuxInternals.org 56

/* File: arch/arm/boot/dts/am57xx-beagle-x15.dts */

i2c2 {
tmp102: tmp102@48 {

compatible = "ti,tmp102";
reg = <0x48>;
...

};

tlv320aic3104: tlv320aic3104@18 { compatible = "ti,tlv320aic3104”;

reg = <0x18>;

AVDD-supply = <&vdd_3v3>;
IOVDD-supply = <&vdd_3v3>;
DRVDD-supply = <&vdd_3v3>;
DVDD-supply = <&aic_dvdd>;

};
}

i2c core goes through all devices in DT and looks for matching drivers.

i2c adapter detects i2c devices through DT

LinuxInternals.org 57

i2c devices are not “enumerated” like USB. So the i2c adapter driver has to manually
parse the DT and let the “bus” code know about these devices

/* We just saw this code */

int omap_i2c_probe(struct platform_device *pdev) {
...
adap->owner = THIS_MODULE;
strlcpy(adap->name, "OMAP I2C adapter", sizeof(adap->name));
adap->algo = &omap_i2c_algo;

adap->nr = pdev->id;
r = i2c_add_numbered_adapter(adap);
...
of_i2c_register_devices(adap); /* Let the Bus core code know of devices */
...

}

