
Understanding Memory Ordering using LKMM and Herd7 1

Understanding Memory Ordering
using LKMM and Herd7
Author: Joel Fernandes <joel@joelfernandes.org> Last Updated: 06/19/2023

Introduction
The herd7 memory consistency tool is used to verify if certain (likely undesirable)
outcomes of memory accesses made by concurrent programs exist, given a memory
model.

As a matter of fact, herd7 on its own does not know anything about how programs
execute.

For example, given a program executing on processor P0:

P0(int *x) {
 WRITE_ONCE(*x, 2);
 WRITE_ONCE(*x, 3);
}

Any sane computer architecture will conclude that the final value of x is 3.

However, herd7 without any memory model (or a memory model that allows everything)
will consider the following 2 possible sequences as valid:

Candidate execution 1:
1. Value 2 is stored to x.
2. Value 3 overwrites the value 2 that was just stored to x.

and,

Candidate execution 2:
1. Value 3 is stored to x.
2. Value 2 overwrites the value 3 that was just stored to x.

Understanding Memory Ordering using LKMM and Herd7 2

These 2 possible executions are called candidate executions.

It is up to the memory model to instruct herd7 to disallow some of these candidate
executions. A sane memory model should disallow the second candidate execution as it
would otherwise be the model of a broken architecture.

The LKMM is a memory model for the Linux Kernel which can be fed to the herd7 tools to
verify the memory ordering properties of a test program, also known as a Litmus Test.
The model is written in the linux-kernel.cat and linux-kernel.bell files. This article will
cover some parts of the model, focusing on how to use the herd7 tool to visually
understand the more complex parts of the files. With herd7, it is possible to generate
complex graphs showcasing the relationship between memory accesses in a litmus test.
This aids in reverse engineering the equations and axioms in the .bell and .cat files.
Armed with this knowledge, readers can explore more advanced nuances on their own
using herd7.

Where possible, we will try to prioritize describing how to use herd7, and the syntax of
CAT code, over actually describing too many details of the axioms, as we believe
understanding the axioms can be achieved once the reader is empowered with the
knowledge of how to use herd7 and read/write CAT code.

Note that, even though a herd7 memory model is abstract in some sense (it does not
describe CPU implementation but just a set of properties and rules on memory ordering
and program execution), it can still be considered to be a model of how a CPU should
behave if it CPU wishes to run the Linux kernel code correctly. It does so by formally
defining how memory ordering in a typical multiprocessor running kernel code should
behave.

In the next section, we will describe how to eliminate the nonsensical candidate
execution 2, which no sane CPU design should support, certainly not the LKMM .

A few basics first

Cache coherence and ordering
Cache coherence refers to the principle that in a multi-processor system, all CPUs must
share a consistent view of the memory contents. This requires that for each location in
shared memory, the stores to that location must form a single global ordering which all
the CPUs agree on (the coherence order), and this ordering must be consistent with the
program order for accesses to that location. Cache coherence protocols are used to

Understanding Memory Ordering using LKMM and Herd7 3

manage this ordering and ensure that all processors have the same view of the order in
which the data to the shared memory location was written. It is important to understand
that due to concurrency and timing, the order in which writes to the same memory
location occur is unpredictable. However, once the writes occur, all CPUs see the same
order in which those writes happened.

In the LKMM , the cache-coherent ordering between any two writes is connected by a
co relationship. For example, two writes W1 and W2 to the same memory location, where
W1 occurred before W2 , would be denoted by W1 ->co W2.

Program Order
Program order (po) is the order in which instructions are presented to a CPU's
execution unit. po-loc is a sub-relation of po that links two memory accesses when the
first comes before the second in program order and they access the same memory
location.

For example, using po-loc , we can link the two memory accesses in the following
program:

P0(int *x) {
 WRITE_ONCE(*x, 5); // W1
 WRITE_ONCE(*x, 6); // W2
}

Since W2 comes after W1 in program order and they access the same memory location
(x), we can say W1 ->po-loc W2 .

Ordering and cycles
Memory models are primarily concerned with ordering. One of the main types of
ordering is temporal ordering, which specifies the order in which a set of events
happened in time. Two different sequences of temporal ordering may also overlap in
space, making them independent of each other and happening in parallel.

When a memory model requires certain accesses to be ordered, cycles are ruled out. If
a certain outcome for final values of a piece of code can only happen if those accesses
would form a cycle, then the memory model forbids the cycle and predicts that the
outcome cannot occur.

Understanding Memory Ordering using LKMM and Herd7 4

However, a memory model on its own may not always be able forbid cycles, and needs
help from the programmer by having them issue memory barriers. Such memory
barriers serve to filter out certain execution candidates before the model can even be
applied to them.

Axioms of the Linux Kernel Memory Model
Now, let's examine the various axioms (rules) of the LKMM . To permit a candidate
execution of a concurrent program, it must not be prohibited by the axioms of the LKMM .
As previously stated, models like the LKMM that are reasonable will prohibit executions
that are impossible on modern hardware.

1. Sequential consistency per-variable (SCPV)
This property is fundamental in modern processors, and it basically means that reads
and writes to a certain variable happen in a total-order. In other words, for a specific
variable, it is not possible to observe a sequence of writes to that variable in an order
different from the order in which its values were written.

This also applies to the writes happening on the same CPU. In a single CPU, the writes
happening on the same variable happen in program order execution.

The way the memory model can enforce this is by defining a rule forbidding a certain
property. Let us see if we can define the violations of SCPV as a cycle in a particular
candidate execution, and then tell the model that such execution candidates are
forbidden.

Consider a program doing the same program from earlier doing a pair of writes, this
time with the events labeled:

P0(int *x) {
 WRITE_ONCE(*x, 2); // event W1
 WRITE_ONCE(*x, 3); // event W2
}

As described earlier, there are 2 candidate executions:

Candidate 1. The final value of x is 2. This happens because of the following candidate
execution:

Understanding Memory Ordering using LKMM and Herd7 5

W1 ->co W2

Candidate 2. The final value of x is 3. This happens because of the following candidate
execution:

W2 ->co W1

Visually this can be shown as 2 candidate graphs: [comment]: <> (Add 2 graphs here)

A quick note on ->co . It describes the order of writes to the same variable. For
example:

W1 ->co W2

means the writes (to the same variable) followed the order of first W1, and then W2 in
the cache-coherent memory. In other words, the program execution resulted in W2
overwriting W1 with the final value of the variable decided by W2.

So, we wish to forbid the pattern in candidate #2. How do we do that?

First, lets learn a new relation. Following the instruction order in the instruction stream,
there is a relation in LKMM called po-loc .

The po-loc relation links 2 program-ordered memory accesses happening on the same
CPU, and on the same variable.

So we have a relation W1 ->po-loc W2 in the program.

Lets learn a new notion of how heard builds a relation (a set of event-pairs).

In herd7’s CAT language, using a keyword like po-loc or co gives you a set of all
possible event-pairs (relations). This set is actually (confusingly) called a relation.

For example, ->co is the following relation with 2 event pairs:

[(W1, W2) , (W2, W1)]

Similarly, ->po-loc is the following relation:

Understanding Memory Ordering using LKMM and Herd7 6

[(W1, W2)]

We can combine program ordering (->po-loc) and cache coherent ordering (->co) to
build a cycle.

We can build a new relation by taking the union of the 2, using the union order (pipe).
po-loc | co

This united relation is:

[(W1, W2), (W2, W1)]

Or it can be written as W1 ->po-loc W2 ->co -> W1

Visually this union results in the following graph:

W2

W1

co po-loc

This is a cycle! So we can we can simply define a property (or axiom) in the CAT code
as:

let scpv = acyclic po-loc | co

This makes herd7 forbid all candidate executions that have such a cycle, and thus don’t
satisfy the scpv property.

Graph showing po-loc and co cycle

Understanding Memory Ordering using LKMM and Herd7 7

Note that to forbid candidate execute #2, we could have simply said:

let scvp = acyclic co

However, consider the following 2 CPU example, with writes happening on different
CPUs:

P0(int *x) {
 WRITE_ONCE(*x, 2); // event W1
 WRITE_ONCE(*x, 3); // event W2
}

P1(int *x) {
 WRITE_ONCE(*x, 4); // event W3
}

Here there are 6 possible candidate executions:

1. Final value is 4.

W1 ->co W2->co W3

1. Final value is 4.

W2 ->co W1 ->co W3

1. Final value is 2.

W2 ->co W3->co W1

1. Final value is 3.

W1 ->co W3 ->co W2

1. Final value is 3.

Understanding Memory Ordering using LKMM and Herd7 8

W3 ->co W1 ->co W2

1. Final value is 2.

W3 ->co W2 ->co W1

Here cases #3 and #6 should be forbidden, as the only allowed final-value outcomes
should be 3 or 4.

Candidate execution #3 has the following relations:

W2 ->co W3
W3 ->co W1
W1 ->po-loc W2

A cycle can be observed when uniting all of these relations using po-loc | co , which is
equivalent to this graph:

W2

W3

co

W1

co

po-loc

Graph showing po-loc and co cycle

Understanding Memory Ordering using LKMM and Herd7 9

Thus acyclic po-loc | co can again be used to forbid the candidate executions #3, and
similarly #6.

So far we have only considered stores, however we must order the loads with respect to
these stores as well, and such reads cannot observe the stores to the same variable out
of order. Let us next look at an example, where the above acyclic definition is
incomplete.

Consider the following Litmus test involving read accesses:

C scpv-rf

{}

P0(int *x)
{
 WRITE_ONCE(*x, 2);
 WRITE_ONCE(*x, 3);
}

P1(int *x)
{
 int r1;
 int r2;

 r1 = READ_ONCE(*x);
 r2 = READ_ONCE(*x);
}

exists (1:r1=3 /\ 1:r2=2)

Here, we hope that the reads to variable x are observed by P1 in the program-order
that were written in P0. So the forbidden exists clause should never occur.

However, if you were to build a CAT model as follows, using the previously determined
acyclic property, then the forbidden case indeed happens.

Here is the CAT code:

include "cos.cat"

acyclic po-loc | co

Understanding Memory Ordering using LKMM and Herd7 10

This can be run using herd7 as follows, with the -show prop options to generate a DOT
graph file of the forbidden case:

herd7 -bell linux-kernel.bell -macros linux-kernel.def -cat test.cat scpvrf.litmus -show p
rop -o OUT/

Running this shows:

Test scpv-rf Allowed
States 9
1:r1=0; 1:r2=0;
1:r1=0; 1:r2=2;
1:r1=0; 1:r2=3;
1:r1=2; 1:r2=0;
1:r1=2; 1:r2=2;
1:r1=2; 1:r2=3;
1:r1=3; 1:r2=0;
1:r1=3; 1:r2=2;
1:r1=3; 1:r2=3;
Ok
Witnesses
Positive: 1 Negative: 8
Condition exists (1:r1=3 /\ 1:r2=2)
Observation scpv-rf Sometimes 1 8
Time scpv-rf 0.00
Hash=f2f1ffdc787b0e923ae8cf087fcd5b12

And the graph for the forbidden case generated by herd7 is as follows:

Understanding Memory Ordering using LKMM and Herd7 11

Test scpv-rf, Generic(Linux-kernel memory consistency model)

Thread 0 Thread 1

e: W[x]=0
Init

a: W[once][x]=2
__store{once}(*x,2);

co

b: W[once][x]=3
__store{once}(*x,3);

co

d: R[once][x]=2 (data)
r2 = __load{once}(*x);

rf

c: R[once][x]=3 (data)
r1 = __load{once}(*x);

rf po

fr

As you can see, there is a cycle between ->po-loc , ->rf and ->fr .

This shows that both ->rf and ->fr should also included in the acyclic property as well.
Hence to avoid the problematic candidate execution, the SCPV property should be
acyclic po-loc | co | rf | fr . That is indeed the case in the Linux kernel’s memory
model.

2. Atomicity
Atomicity can be defined as a read-modify-write (RMW) operation on a memory location
which happens atomically, that is no write from another CPU can happen between the
read and the write. In other words, the read and write operation in the RMW operation
are one (atomic).

First let us see what happens if we have an RMW on CPU 0 being interleaved with a
write from another CPU 1. Consider the litmus test we will use to generate a graph from:

A graph showing failure of read sequential consistency

Understanding Memory Ordering using LKMM and Herd7 12

C rmw-1

{}

P0(int *x)
{
 int r0;

 r0 = xchg(x, 1);
}

P1(int *x)
{
 WRITE_ONCE(*x, 2);
}

exists (0:r0=0 /\ x=1)

The below graph generated by herd7 shows the case that exists:

Test rmw-1, Generic(Linux-kernel memory consistency model)

Thread 0 a: R*[once][x]=0

b: W*[once][x]=1

Rmw c: W[once][x]=2

fr

Thread 1

co

The Rmw edge in the graph illustrates the data-dependent relation between the read and
the write, with the additional implication that it is to be atomic. The fr edge shows that
a write on another CPU happened after the read operation of the RMW. The co edge
shows that another write overwrote that write.

Understanding Memory Ordering using LKMM and Herd7 13

This is precisely what we want our model to prevent – another write should not be
allowed to interleave in such a fashion, and all modern CPU architectures have
hardware support to prevent such interleaving. We expect APIs like xchg() in the Linux
kernel, that does use RMW instructions to work correctly.

To prevent the above case, we first build a relation linking the fr and co edges using
the sequence operator (semicolon) as follows:

(fr; co)

The only thing left to form an intersection between this relation and the relation
consisting of the rmw operation, to form a new relation, and then forbid then forbid that
such a relation exists in any candidate execution. These candidates will be rejected, as
our model cannot possibly support them (just like the underlying hardware cannot).

empty rmw & (fr; co)

The next several sections will discuss difficult-to-understand topics using the herd7
modeling tool and using examples and mathematics where possible.

3. Propagation
One of the most confusing parts of memory ordering is that of delayed propagation.
Using a formal modeling tool like LKMM, we can get a better understanding of this
concept.

Consider the following litmus test with 2 concurrent threads running on 2 CPUs (P0 and
P1):

P0(int *x, int *y)
{
 WRITE_ONCE(*x, 1);
 smp_wmb();
 WRITE_ONCE(*y, 1);
}

P1(int *x, int *y)
{
 int r0;

Understanding Memory Ordering using LKMM and Herd7 14

 WRITE_ONCE(*y, 2);
 smp_mb();
 r0 = READ_ONCE(*x);
}

exists (y=2 /\ 1:r0=0)

The exists clause tries to verify if any candidate execution in this concurrent program
can result in y having a final value of 2, and P1’s read into register r0 having a value of
0.

Intuitively speaking, if y has a final value of 2, then the store of 1 to y in some sense
preceded the store of 2 to y. The smp_mb() guarantees that the P1() ’s store to y
precedes its load from x, and the smp_wmb() guarantees that P0() ’s stores are seen in
order.

Putting all of this together, one might hope that whenever the final value of y is 2, the
final value of r0 would be guaranteed to be 1.

Unfortunately, there is real hardware that runs the Linux kernel on which the final value
of y can be 2 and the final value of r0 can be 0. LKMM must therefore allow this
outcome, counter-intuitive though it might be.

The issue happens because we did not consider a subtle point related to propagation
here. Even though we have the ->co relation between the stores to y , the store to x
can be propagated much later to thread P1 as the weak fence delays the propagation.

Let us see what it takes to forbid this mathematically and why weak fences cannot
forbid it. First lets define a ->prop relation. A ->prop relation guarantees the propagation
of changes to different memory locations to happen in a certain order.

So for instance, if we have writes W1 and W2 , W1 ->co W2 implies W1 ->prop W2 . Weak
fences also assist in propagation of previous ->co links.

So, W1 ->co W2 ->weak-fence W3 also implies W1 ->prop W3 . This property of weak fences is
called cumulativity.

Applying this to the previous example, for x to be read as 0 with the final value as y ,
we generate:

WRITE_ONCE(*y, 1) ->co WRITE_ONCE(*y, 2) ->strong-fence READ_ONCE(*x)

Understanding Memory Ordering using LKMM and Herd7 15

and,

READ_ONCE(*x); ->fr WRITE_ONCE(*x, 1); ->weak-fence WRITE_ONCE(*y, 1);

This implies:

WRITE_ONCE(*y, 1) ->prop READ_ONCE(*x)

and

READ_ONCE(*x); ->prop WRITE_ONCE(*y, 1);

That may appear like a cycle at first that we can should be intuitively forbidden, however
it is important to realize that A ->prop B and B ->prop C does not imply A ->prop C .
Because we have no way of chaining 2 ->prop relations this way, we cannot define a
chain of ->prop relations to be acyclic because ->prop relations may not happen
temporally in a strict order.

In plain words, The action “A propagating before B” can happen after the action “B
propagating before C”.

In order to enforce the order A ->prop B ->prop C , we need both prop relations to involve
strong fences, not just one of them. This upgrades the prop relation to a pb relation
(propagates before) in LKMM terminology.

Applying this to the previous example, we have:

WRITE_ONCE(*y, 1) ->co WRITE_ONCE(*y, 2) ->strong-fence READ_ONCE(*x)

and

READ_ONCE(*x); ->fr WRITE_ONCE(*x, 1); ->strong-fence WRITE_ONCE(*y, 1);

This implies:

Understanding Memory Ordering using LKMM and Herd7 16

WRITE_ONCE(*y, 1) ->pb READ_ONCE(*x)

and

READ_ONCE(*x); ->pb WRITE_ONCE(*y, 1);

Now we can forbid this undesirable cause of x being read as 0, simply saying that the
LKMM forbids cycles in ->pb .

4. Speculative execution and memory ordering
In this section, we will go over an example of control-flow speculation that causes
memory accesses to happen in an unexpected order, and how herd7 formally models
this.

Consider the following litmus test:

C rfitest

{
 int a = 0;
 int *x;
 int y = 0;
}

P0(int **x, int *y, int *a)
{
 WRITE_ONCE(*a, 1);
 smp_mb();
 WRITE_ONCE(*y, 1);

}

P1(int **x, int *y, int *a)
{
 int r0;
 int *r1;
 int r2;

 r0 = READ_ONCE(*y);
 if (r0 == 1) {
 WRITE_ONCE(*x, a);
 r1 = READ_ONCE(*x);
 r2 = READ_ONCE(*r1);

Understanding Memory Ordering using LKMM and Herd7 17

 }
}

exists (1:r0 = 1 /\ 1:r2 = 0)

In this example, to avoid the condition where register r0’s value in P1 is 1 and r2’s value
is 0, we expect P0’s store to a to propogate to P1’s load of a . This is intuitively
enforced by the fact that, between that “store to a” and “load from a” event, we have the
following: 1. A strong fence: smp_mb() . 2. A read-from dependency between P0’s store to
y and P1’s load of y . 3. And a control dependency that we will execute the body of the
loop only if the value loaded in step 2 obtained a value of 1.

However, modern hardware is anything but intuitive! So the case where register r0’s
value in P1 is 1 and r2’s value is 0 can very well happen on weakly ordered
architectures like PowerPC.

The reason for this is control-flow speculation along with a feature in pipelined hardware
called store forwarding . The body of the loop can be speculatively executed by the
processor in advance of knowing the value y being loaded into r0 . Further, the body of
the loop is indendent of r0. So as long as the processor does not COMMIT the side
effects of store to x in P1 until the processor knows the value of y , everything is fine.

This is where store-forwarding comes in. Even before the store of the address of a to x
in P0 can be committed, the address of x can be forwarded directly to the load of x .
The next statement then loads a stale value of a , before the value of y can even be
loaded, thus resulting in the counter-intuitive outcome. The store-forwarding behavior is
modeled by the ->rfi relation in the LKMM (Read-from internal relation).

As can be seen in this example, both store-forwarding and speculation are required to
result in the counter-inutive outcome.

This can be avoided by adding a full memory barrier as the first statement in the body of
the if block. This will ensure that the process of speculation completes before
executing the body of the loop.

Conclusion
These is a work in progress article. I tried to go deep and explain things that are not
explained in other places. I may update this article in the future as I uncover the
mysteries of herd7 and LKMM.

Understanding Memory Ordering using LKMM and Herd7 18

