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Introduction
The herd7 memory consistency tool is used to verify if certain (likely undesirable) 
outcomes of memory accesses made by concurrent programs exist, given a memory 
model.

As a matter of fact, herd7 on its own does not know anything about how programs 
execute.

For example, given a program executing on processor P0:

P0(int *x) { 
  WRITE_ONCE(*x, 2); 
  WRITE_ONCE(*x, 3); 
}

Any sane computer architecture will conclude that the final value of x  is 3.

However, herd7 without any memory model (or a memory model that allows everything) 
will consider the following 2 possible sequences as valid:

Candidate execution 1: 
1. Value 2 is stored to x. 
2. Value 3 overwrites the value 2 that was just stored to x.

and,

Candidate execution 2: 
1. Value 3 is stored to x. 
2. Value 2 overwrites the value 3 that was just stored to x.
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These 2 possible executions are called candidate executions.

It is up to the memory model to instruct herd7 to disallow some of these candidate 
executions. A sane memory model should disallow the second candidate execution as it 
would otherwise be the model of a broken architecture.

The LKMM  is a memory model for the Linux Kernel which can be fed to the herd7 tools to 
verify the memory ordering properties of a test program, also known as a Litmus Test. 
The model is written in the linux-kernel.cat  and linux-kernel.bell  files. This article will 
cover some parts of the model, focusing on how to use the herd7 tool to visually 
understand the more complex parts of the files. With herd7, it is possible to generate 
complex graphs showcasing the relationship between memory accesses in a litmus test. 
This aids in reverse engineering the equations and axioms in the .bell  and .cat  files. 
Armed with this knowledge, readers can explore more advanced nuances on their own 
using herd7.

Where possible, we will try to prioritize describing how to use herd7, and the syntax of 
CAT  code, over actually describing too many details of the axioms, as we believe 
understanding the axioms can be achieved once the reader is empowered with the 
knowledge of how to use herd7 and read/write CAT  code.

Note that, even though a herd7 memory model is abstract in some sense (it does not 
describe CPU implementation but just a set of properties and rules on memory ordering 
and program execution), it can still be considered to be a model of how a CPU should 
behave if it CPU wishes to run the Linux kernel code correctly. It does so by formally 
defining how memory ordering in a typical multiprocessor running kernel code should 
behave.

In the next section, we will describe how to eliminate the nonsensical candidate 
execution 2, which no sane CPU design should support, certainly not the LKMM .

A few basics first

Cache coherence and ordering
Cache coherence refers to the principle that in a multi-processor system, all CPUs must 
share a consistent view of the memory contents. This requires that for each location in 
shared memory, the stores to that location must form a single global ordering which all 
the CPUs agree on (the coherence order), and this ordering must be consistent with the 
program order for accesses to that location. Cache coherence protocols are used to 



Understanding Memory Ordering using LKMM and Herd7 3

manage this ordering and ensure that all processors have the same view of the order in 
which the data to the shared memory location was written. It is important to understand 
that due to concurrency and timing, the order in which writes to the same memory 
location occur is unpredictable. However, once the writes occur, all CPUs see the same 
order in which those writes happened.

In the LKMM , the cache-coherent ordering between any two writes is connected by a 
co relationship. For example, two writes W1 and W2  to the same memory location, where 
W1  occurred before W2 , would be denoted by W1 ->co W2.

Program Order
Program order ( po ) is the order in which instructions are presented to a CPU's 
execution unit. po-loc  is a sub-relation of po  that links two memory accesses when the 
first comes before the second in program order and they access the same memory 
location.

For example, using po-loc , we can link the two memory accesses in the following 
program:

P0(int *x) { 
  WRITE_ONCE(*x, 5);  // W1 
  WRITE_ONCE(*x, 6);  // W2 
}

Since W2  comes after W1  in program order and they access the same memory location 
( x ), we can say W1 ->po-loc W2 .

Ordering and cycles
Memory models are primarily concerned with ordering. One of the main types of 
ordering is temporal ordering, which specifies the order in which a set of events 
happened in time. Two different sequences of temporal ordering may also overlap in 
space, making them independent of each other and happening in parallel.

When a memory model requires certain accesses to be ordered, cycles are ruled out. If 
a certain outcome for final values of a piece of code can only happen if those accesses 
would form a cycle, then the memory model forbids the cycle and predicts that the 
outcome cannot occur.
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However, a memory model on its own may not always be able forbid cycles, and needs 
help from the programmer by having them issue memory barriers. Such memory 
barriers serve to filter out certain execution candidates before the model can even be 
applied to them.

Axioms of the Linux Kernel Memory Model
Now, let's examine the various axioms (rules) of the LKMM . To permit a candidate 
execution of a concurrent program, it must not be prohibited by the axioms of the LKMM . 
As previously stated, models like the LKMM  that are reasonable will prohibit executions 
that are impossible on modern hardware.

1. Sequential consistency per-variable (SCPV)
This property is fundamental in modern processors, and it basically means that reads 
and writes to a certain variable happen in a total-order. In other words, for a specific 
variable, it is not possible to observe a sequence of writes to that variable in an order 
different from the order in which its values were written.

This also applies to the writes happening on the same CPU. In a single CPU, the writes 
happening on the same variable happen in program order execution.

The way the memory model can enforce this is by defining a rule forbidding a certain 
property. Let us see if we can define the violations of SCPV  as a cycle in a particular 
candidate execution, and then tell the model that such execution candidates are 
forbidden.

Consider a program doing the same program from earlier doing a pair of writes, this 
time with the events labeled:

P0(int *x) { 
  WRITE_ONCE(*x, 2);            // event W1 
  WRITE_ONCE(*x, 3);            // event W2 
}

As described earlier, there are 2 candidate executions:

Candidate 1. The final value of x is 2. This happens because of the following candidate 
execution:
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W1 ->co W2

Candidate 2. The final value of x is 3. This happens because of the following candidate 
execution:

W2 ->co W1

Visually this can be shown as 2 candidate graphs: [comment]: <> (Add 2 graphs here)

A quick note on ->co . It describes the order of writes to the same variable. For 
example:

W1 ->co W2

means the writes (to the same variable) followed the order of first W1, and then W2 in 
the cache-coherent memory. In other words, the program execution resulted in W2 
overwriting W1 with the final value of the variable decided by W2.

So, we wish to forbid the pattern in candidate #2. How do we do that?

First, lets learn a new relation. Following the instruction order in the instruction stream, 
there is a relation in LKMM called po-loc .

The po-loc  relation links 2 program-ordered memory accesses happening on the same 
CPU, and on the same variable.

So we have a relation W1 ->po-loc W2  in the program.

Lets learn a new notion of how heard builds a relation (a set of event-pairs).

In herd7’s CAT  language, using a keyword like po-loc  or co  gives you a set of all 
possible event-pairs (relations). This set is actually (confusingly) called a relation.

For example, ->co  is the following relation with 2 event pairs:

[ (W1, W2)  ,  (W2, W1)  ]

Similarly, ->po-loc  is the following relation:
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[ (W1, W2) ]

We can combine program ordering ( ->po-loc ) and cache coherent ordering ( ->co ) to 
build a cycle.

We can build a new relation by taking the union of the 2, using the union order (pipe). 
po-loc | co

This united relation is:

[ (W1, W2), (W2, W1) ]

Or it can be written as W1 ->po-loc W2 ->co -> W1

Visually this union results in the following graph:

W2

W1

co  po-loc

This is a cycle! So we can we can simply define a property (or axiom) in the CAT code 
as:

let scpv = acyclic po-loc | co

This makes herd7 forbid all candidate executions that have such a cycle, and thus don’t 
satisfy the scpv  property.

Graph showing po-loc and co cycle
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Note that to forbid candidate execute #2, we could have simply said:

let scvp = acyclic co

However, consider the following 2 CPU example, with writes happening on different 
CPUs:

P0(int *x) { 
  WRITE_ONCE(*x, 2);            // event W1 
  WRITE_ONCE(*x, 3);            // event W2 
} 
 
P1(int *x) { 
  WRITE_ONCE(*x, 4);            // event W3 
}

Here there are 6 possible candidate executions:

1. Final value is 4.

W1 ->co W2->co W3

1. Final value is 4.

W2 ->co W1 ->co W3

1. Final value is 2.

W2 ->co W3->co W1

1. Final value is 3.

W1 ->co W3 ->co W2

1. Final value is 3.
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W3 ->co W1 ->co W2

1. Final value is 2.

W3 ->co W2 ->co W1

Here cases #3 and #6 should be forbidden, as the only allowed final-value outcomes 
should be 3 or 4.

Candidate execution #3 has the following relations:

W2 ->co W3 
W3 ->co W1 
W1 ->po-loc W2

A cycle can be observed when uniting all of these relations using po-loc | co , which is 
equivalent to this graph:

W2

W3

co

W1

co

po-loc

Graph showing po-loc and co cycle
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Thus acyclic po-loc | co  can again be used to forbid the candidate executions #3, and 
similarly #6.

So far we have only considered stores, however we must order the loads with respect to 
these stores as well, and such reads cannot observe the stores to the same variable out 
of order. Let us next look at an example, where the above acyclic definition is 
incomplete.

Consider the following Litmus test involving read accesses:

C scpv-rf 
 
{} 
 
P0(int *x) 
{ 
        WRITE_ONCE(*x, 2); 
        WRITE_ONCE(*x, 3); 
} 
 
P1(int *x) 
{ 
        int r1; 
        int r2; 
 
        r1 = READ_ONCE(*x); 
        r2 = READ_ONCE(*x); 
} 
 
exists (1:r1=3 /\ 1:r2=2)

Here, we hope that the reads to variable x  are observed by P1 in the program-order 
that were written in P0. So the forbidden exists clause should never occur.

However, if you were to build a CAT model as follows, using the previously determined 
acyclic property, then the forbidden case indeed happens.

Here is the CAT code:

include "cos.cat" 
 
acyclic po-loc | co
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This can be run using herd7 as follows, with the -show prop  options to generate a DOT 
graph file of the forbidden case:

herd7 -bell linux-kernel.bell -macros linux-kernel.def -cat test.cat scpvrf.litmus -show p
rop -o OUT/

Running this shows:

Test scpv-rf Allowed 
States 9 
1:r1=0; 1:r2=0; 
1:r1=0; 1:r2=2; 
1:r1=0; 1:r2=3; 
1:r1=2; 1:r2=0; 
1:r1=2; 1:r2=2; 
1:r1=2; 1:r2=3; 
1:r1=3; 1:r2=0; 
1:r1=3; 1:r2=2; 
1:r1=3; 1:r2=3; 
Ok 
Witnesses 
Positive: 1 Negative: 8 
Condition exists (1:r1=3 /\ 1:r2=2) 
Observation scpv-rf Sometimes 1 8 
Time scpv-rf 0.00 
Hash=f2f1ffdc787b0e923ae8cf087fcd5b12

And the graph for the forbidden case generated by herd7 is as follows:
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Test scpv-rf, Generic(Linux-kernel memory consistency model)

Thread 0 Thread 1

e: W[x]=0
Init

a: W[once][x]=2
__store{once}(*x,2);

co

b: W[once][x]=3
__store{once}(*x,3);

co

d: R[once][x]=2 (data)
r2 = __load{once}(*x);

rf

c: R[once][x]=3 (data)
r1 = __load{once}(*x);

rf po

fr

As you can see, there is a cycle between ->po-loc , ->rf  and ->fr .

This shows that both ->rf  and ->fr  should also included in the acyclic property as well. 
Hence to avoid the problematic candidate execution, the SCPV property should be 
acyclic po-loc | co | rf | fr . That is indeed the case in the Linux kernel’s memory 
model.

2. Atomicity
Atomicity can be defined as a read-modify-write (RMW) operation on a memory location 
which happens atomically, that is no write from another CPU can happen between the 
read and the write. In other words, the read and write operation in the RMW operation 
are one (atomic).

First let us see what happens if we have an RMW on CPU 0 being interleaved with a 
write from another CPU 1. Consider the litmus test we will use to generate a graph from:

A graph showing failure of read sequential consistency
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C rmw-1 
 
{} 
 
P0(int *x) 
{ 
        int r0; 
 
        r0 = xchg(x, 1); 
} 
 
P1(int *x) 
{ 
        WRITE_ONCE(*x, 2); 
} 
 
 
exists (0:r0=0 /\ x=1)

The below graph generated by herd7 shows the case that exists:

Test rmw-1, Generic(Linux-kernel memory consistency model)

Thread 0 a: R*[once][x]=0

b: W*[once][x]=1

Rmw c: W[once][x]=2

fr

Thread 1

co

The Rmw  edge in the graph illustrates the data-dependent relation between the read and 
the write, with the additional implication that it is to be atomic. The fr  edge shows that 
a write on another CPU happened after the read operation of the RMW. The co  edge 
shows that another write overwrote that write.
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This is precisely what we want our model to prevent – another write should not be 
allowed to interleave in such a fashion, and all modern CPU architectures have 
hardware support to prevent such interleaving. We expect APIs like xchg()  in the Linux 
kernel, that does use RMW instructions to work correctly.

To prevent the above case, we first build a relation linking the fr  and co  edges using 
the sequence operator (semicolon) as follows:

(fr; co)

The only thing left to form an intersection between this relation and the relation 
consisting of the rmw operation, to form a new relation, and then forbid then forbid that 
such a relation exists in any candidate execution. These candidates will be rejected, as 
our model cannot possibly support them (just like the underlying hardware cannot).

empty rmw & (fr; co)

The next several sections will discuss difficult-to-understand topics using the herd7 
modeling tool and using examples and mathematics where possible.

3. Propagation
One of the most confusing parts of memory ordering is that of delayed propagation. 
Using a formal modeling tool like LKMM, we can get a better understanding of this 
concept.

Consider the following litmus test with 2 concurrent threads running on 2 CPUs (P0 and 
P1):

P0(int *x, int *y) 
{ 
    WRITE_ONCE(*x, 1); 
    smp_wmb(); 
    WRITE_ONCE(*y, 1); 
} 
 
P1(int *x, int *y) 
{ 
    int r0; 
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    WRITE_ONCE(*y, 2); 
    smp_mb(); 
    r0 = READ_ONCE(*x); 
} 
 
exists (y=2 /\ 1:r0=0)

The exists clause tries to verify if any candidate execution in this concurrent program 
can result in y  having a final value of 2, and P1’s read into register r0 having a value of 
0.

Intuitively speaking, if y has a final value of 2, then the store of 1 to y in some sense 
preceded the store of 2 to y. The smp_mb()  guarantees that the P1() ’s store to y 
precedes its load from x, and the smp_wmb()  guarantees that P0() ’s stores are seen in 
order.

Putting all of this together, one might hope that whenever the final value of y is 2, the 
final value of r0 would be guaranteed to be 1.

Unfortunately, there is real hardware that runs the Linux kernel on which the final value 
of y can be 2 and the final value of r0  can be 0. LKMM must therefore allow this 
outcome, counter-intuitive though it might be.

The issue happens because we did not consider a subtle point related to propagation 
here. Even though we have the ->co  relation between the stores to y , the store to x  
can be propagated much later to thread P1  as the weak fence  delays the propagation.

Let us see what it takes to forbid this mathematically and why weak fences cannot 
forbid it. First lets define a ->prop  relation. A ->prop  relation guarantees the propagation 
of changes to different memory locations to happen in a certain order.

So for instance, if we have writes W1  and W2 , W1 ->co W2  implies W1 ->prop W2 . Weak 
fences also assist in propagation of previous ->co  links.

So, W1 ->co W2 ->weak-fence W3  also implies W1 ->prop W3 . This property of weak fences is 
called cumulativity.

Applying this to the previous example, for x  to be read as 0 with the final value as y , 
we generate:

WRITE_ONCE(*y, 1) ->co WRITE_ONCE(*y, 2) ->strong-fence  READ_ONCE(*x)
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and,

READ_ONCE(*x); ->fr WRITE_ONCE(*x, 1); ->weak-fence WRITE_ONCE(*y, 1);

This implies:

WRITE_ONCE(*y, 1) ->prop  READ_ONCE(*x)

and

READ_ONCE(*x); ->prop WRITE_ONCE(*y, 1);

That may appear like a cycle at first that we can should be intuitively forbidden, however 
it is important to realize that A ->prop B  and B ->prop C  does not imply A ->prop C . 
Because we have no way of chaining 2 ->prop  relations this way, we cannot define a 
chain of ->prop  relations to be acyclic because ->prop  relations may not happen 
temporally in a strict order.

In plain words, The action “A propagating before B” can happen after the action “B 
propagating before C”.

In order to enforce the order A ->prop B ->prop C , we need both prop  relations to involve 
strong fences, not just one of them. This upgrades the prop  relation to a pb  relation 
(propagates before) in LKMM terminology.

Applying this to the previous example, we have:

WRITE_ONCE(*y, 1) ->co WRITE_ONCE(*y, 2) ->strong-fence  READ_ONCE(*x)

and

READ_ONCE(*x); ->fr WRITE_ONCE(*x, 1); ->strong-fence WRITE_ONCE(*y, 1);

This implies:
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WRITE_ONCE(*y, 1) ->pb  READ_ONCE(*x)

and

READ_ONCE(*x); ->pb WRITE_ONCE(*y, 1);

Now we can forbid this undesirable cause of x  being read as 0, simply saying that the 
LKMM forbids cycles in ->pb .

4. Speculative execution and memory ordering
In this section, we will go over an example of control-flow speculation that causes 
memory accesses to happen in an unexpected order, and how herd7 formally models 
this.

Consider the following litmus test:

C rfitest 
 
{ 
    int a = 0; 
    int *x; 
    int y = 0; 
} 
 
P0(int **x, int *y, int *a) 
{ 
    WRITE_ONCE(*a, 1); 
    smp_mb(); 
    WRITE_ONCE(*y, 1); 
 
} 
 
P1(int **x, int *y, int *a) 
{ 
    int r0; 
    int *r1; 
    int r2; 
 
    r0 = READ_ONCE(*y); 
    if (r0 == 1) { 
       WRITE_ONCE(*x, a); 
       r1 = READ_ONCE(*x); 
       r2 = READ_ONCE(*r1); 
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    } 
} 
 
exists (1:r0 = 1 /\ 1:r2 = 0)

In this example, to avoid the condition where register r0’s value in P1 is 1 and r2’s value 
is 0, we expect P0’s store to a  to propogate to P1’s load of a . This is intuitively 
enforced by the fact that, between that “store to a” and “load from a” event, we have the 
following: 1. A strong fence: smp_mb() . 2. A read-from  dependency between P0’s store to 
y  and P1’s load of y . 3. And a control dependency that we will execute the body of the 
loop only if the value loaded in step 2 obtained a value of 1.

However, modern hardware is anything but intuitive! So the case where register r0’s 
value in P1 is 1 and r2’s value is 0 can very well happen on weakly ordered 
architectures like PowerPC.

The reason for this is control-flow speculation along with a feature in pipelined hardware 
called store forwarding . The body of the loop can be speculatively executed by the 
processor in advance of knowing the value y  being loaded into r0 . Further, the body of 
the loop is indendent of r0. So as long as the processor does not COMMIT the side 
effects of store to x  in P1 until the processor knows the value of y , everything is fine.

This is where store-forwarding comes in. Even before the store of the address of a to x  
in P0 can be committed, the address of x  can be forwarded directly to the load of x . 
The next statement then loads a stale value of a , before the value of y  can even be 
loaded, thus resulting in the counter-intuitive outcome. The store-forwarding behavior is 
modeled by the ->rfi  relation in the LKMM (Read-from internal relation).

As can be seen in this example, both store-forwarding and speculation are required to 
result in the counter-inutive outcome.

This can be avoided by adding a full memory barrier as the first statement in the body of 
the if  block. This will ensure that the process of speculation completes before 
executing the body of the loop.

Conclusion
These is a work in progress article. I tried to go deep and explain things that are not 
explained in other places. I may update this article in the future as I uncover the 
mysteries of herd7 and LKMM.
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