
Make RCU do less (& later) !
Presenters:

Joel Fernandes (Google)
Uladzislau Rezki (Sony)
Rushikesh Kadam (Intel)

Intel power data courtesy: Sitanshu Nanavati.

Overview

● Discuss what RCU does at high-level (not how it works!).

● Discuss the 2 main issues we found:
○ On a mostly idle system, RCU activity can disturb the idleness.

■ RCU default config required to keep tick on when idle and CBs queued.

■ RCU constantly asked to queue callbacks on a lightly loaded system.

● Discuss possible solutions.

● Taking questions in the end as time permits (and then hallway)

What RCU does?
Data-Structure read/modification usecase:

● RCU reader critical section protected by “read lock”

● RCU writer critical section protected by regular locks.

● Reader and writer execute concurrently.

● Writer creates copy of obj, writes to it and switches object pointer to new

one (release ordered write).

● Writer Garbage Collects old object after waiting (update)

● That’s just one use case, there are many uses of RCU.

All use cases need same basic tools:

● Lock-less markers of a critical section (CS). Call it “reader”.

● Start waiting at some point in time (t = T0).

● Stop waiting after all readers that existed at T0 exited CS (t = T1).

Note: Start (T0) is when a “callback is queued”, Stop is when a “callback is invoked”.

What RCU does?

What RCU does?

● On a local CPU (running in kernel mode with CB queued).

Upper red arrows are timer tick checking are there
readers left? If not, report.

Lower red arrows are timer tick: have ALL CPUs
reported? If yes, invoke CB. If no, try again.

Queued a Callback (CB)

Time

T0 T1

What RCU does?
● On a local CPU (running in idle mode with CB queued).

Upper red arrows are timer tick checking are there
readers left? If not, report.
THESE NOT NEEDED - AS CPU CANNOT BE IN
RCU READER CRITICAL SECTION!

Lower red arrows are timer tick: have ALL CPUs
reported? If yes, invoke CB. If no, try again.
THESE STILL NEEDED - AS local CPU has queued CB.

Queued a Callback (CB)
And soon go idle…

Time

T0 T1

What RCU does?

● You see the problem?

○ RCU can block the timer tick from getting turned off!

○ Negates power-savings of CONFIG_NOHZ_IDLE

(To be fair to RCU, this workload queues a lot of RCU Callbacks on otherwise idle CPUs,

requiring RCU to do work on these otherwise-idle CPUs).

Issue 1: RCU keeping the scheduler tick ON when idle.
● “Local Video Playback” use-case

has 2500+ timer wakes per
second. A large chunk of the wakes
result from constantly queued RCU
callbacks.

● RCU wakes are seen at HZ rate
(red boxes) between graphics
16.6ms activity (blue boxes)

● Blocks deeper Package C-states.
Impacts power

How bad are idle ticks for power

● We know idle ticks are bad for power, but
we did not know how bad!

● In Video playback, timer wakes amount
to < 2% CPU load, but blocked deepest
package C-states (PC8) for 25+% of the
time, causing 10+% in SoC + memory
power.

● If you are profiling CPU load, then you will
likely miss the impact of wakes (use
powertop)

Why are idle ticks so bad for power?

What are package C-states
● Traditionally ACPI C-states are CPU low power states
● Idle governor picks C-states based on OS next event

prediction and C-states exit latency & target residency
● CPU C-states have low exit latency & target

residency, so doesn’t block much on ticks

● System-On-Chip architecture provides opportunity to
extend the OS C-states hints to power manage the
entire SoC.

● SoCs have power management unit which
coordinates CPU, IP blocks and common logic, to put
entire SoC in low power

● Package C-states add extended C-states with higher
exit latency & longer power breakup time.

static struct cpuidle_state adl_cstates[] __initdata = {
{

.name = "C1",

.exit_latency = 1,

.target_residency = 1,
{

.name = "C1E",

.exit_latency = 2,

.target_residency = 4,
{

.name = "C6",

.exit_latency = 220,

.target_residency = 600,
{

.name = "C8",

.exit_latency = 280,

.target_residency = 800,
{

.name = "C10",

.exit_latency = 680,

.target_residency = 2000,
{

.enter = NULL }
};

New
Extended
C-states

But why does some RCU configs keep tick on if so bad
for cpuidle?

This is required in default RCU configurations as CBs are invoked on same CPU they
were queued on, in a softirq.

Advantages:

● Executing CBs on queuing CPU eliminates need for CB list locking.
● No need for additional thread wake ups as local softirq execs CB.
● Cache-line is likely hot from queuing and CB would not incur misses.

These can be especially useful on busy systems and large #CPU server!

● Periodic tick check helps with timely detection of GP end and thus CB exec.

But why does some RCU configs keep tick on if so bad
for cpuidle?

Say we don’t want any of those advantages, and
just want tick off already…

Solution for newer kernels: CONFIG_RCU_NOCB_CPU (Execute RCU CBs in per-cpu threads.)

Issue 1: RCU keeping the scheduler tick ON when idle.

CPU 0 CPU 1
Queue CB

Idle + tick-off

Time

Invoke CB

Solution for newer kernels: CONFIG_RCU_NOCB_CPU

Issue 1: RCU keeping the scheduler tick ON when idle.

CPU 0 CPU 1
Queue CB

Idle + tick-off

Time

Invoke CB

 CB list Locking

Can cause performance overhead on system with frequent CB
queue/exec!

Solution for newer kernels: CONFIG_RCU_NOCB_CPU

However, can be great for power and CPU isolation…

● Scheduler may move threads to non-idle CPUs thus leaving more idle.

● Both starting of new grace periods, and executing CBs are moved out of the

softirq context and into threads.

Issue 1: RCU keeping the scheduler tick ON when idle.

● RCU callback offload unblocks
dynticks-idle and hence
reduces timer wakes.

● RCU callback offload does
increase the scheduler wakes
marginally, but reduces total
platform wakes.

● Improves Package C-states
residency and hence SoC +
Memory power.

CONFIG_RCU_NOCB_CPU saves lots of power

Use-case: Local video playback via
Chrome browser, VP9 1080p @ 30
fps content

Device: Chrome reference device,
AlderLake Hybrid CPU with 2
Cores (with Hyperthreading) + 8
Atoms

New option: CONFIG_RCU_NOCB_CPU_ALL

● If you enable CONFIG_RCU_NOCB_CPU, you still need to
specify rcu_nocbs=0-N to make it work.

So…

● New option CONFIG_RCU_NOCB_CPU_ALL was added to just
enable nocb for all CPUs by default.

Can we do even better?

Observations:

● When a system is mostly idle, most CBs don’t need to execute right
away, some can be delayed as long as needed!

● Some CBs in the system “trickle” frequently.

● Some CBs in the system “trickle” frequently.

● Several callbacks constantly queued.

Observation: ChromeOS when idle

rcutop refreshing every 5 seconds. ChromeOS logged
in with screen off. Device on battery power.

Observation:
ChromeOS
Display pipeline
Display pipeline in
ChromeOS constantly
opens/close graphics
buffers.

VizCompositorTh-1999 [006] 1472.325451: sys_enter_close: fd: 0x00000033
VizCompositorTh-1999 [006] 1472.325457: sys_enter_close: fd: 0x00000046
ThreadPoolSingl-6857 [010] 1472.325734: sys_enter_close: fd: 0x00000025
ThreadPoolSingl-6857 [010] 1472.325743: rcu_callback: rcu_preempt rhp=0xffff9f3edc718480 func=file_free_rcu 1
 chrome-1975 [000] 1472.344365: sys_enter_close: fd: 0x0000002d
 DrmThread-1993 [002] 1472.344627: sys_enter_close: fd: 0x00000044
 DrmThread-1993 [002] 1472.344844: sys_enter_close: fd: 0x00000044
 chrome-1975 [000] 1472.345019: sys_enter_close: fd: 0x00000046
VizCompositorTh-1999 [006] 1472.345071: sys_enter_close: fd: 0x00000046
VizCompositorTh-1999 [006] 1472.345088: sys_enter_close: fd: 0x00000044

kworker/10:2-2105 [010] 1472.346603: rcu_callback: rcu_preempt rhp=0xffff9f41efa9f600 func=rcu_work_rcufn 1
 kworker/9:4-3546 [009] 1472.346603: rcu_callback: rcu_preempt rhp=0xffff9f41efa5f600 func=rcu_work_rcufn 1
 kworker/0:4-3506 [000] 1472.346606: rcu_callback: rcu_preempt rhp=0xffff9f41ef81f600 func=rcu_work_rcufn 1
 DrmThread-1993 [002] 1472.357990: sys_enter_close: fd: 0x0000002e
 DrmThread-1993 [002] 1472.358005: rcu_callback: rcu_preempt rhp=0xffff9f3eb9328000 func=file_free_rcu 1
 chrome-1975 [000] 1472.358200: sys_enter_close: fd: 0x00000038
VizCompositorTh-1999 [006] 1472.358367: sys_enter_close: fd: 0x0000002e
 chrome-1975 [000] 1472.358539: sys_enter_close: fd: 0x00000044
 chrome-1975 [000] 1472.358546: sys_enter_close: fd: 0x0000002e
 chrome-1975 [000] 1472.358548: sys_enter_close: fd: 0x00000038
VizCompositorTh-1999 [006] 1472.358778: sys_enter_close: fd: 0x0000002e
VizCompositorTh-1999 [006] 1472.358784: sys_enter_close: fd: 0x00000046
ThreadPoolSingl-6857 [010] 1472.359008: sys_enter_close: fd: 0x00000025
ThreadPoolSingl-6857 [010] 1472.359019: rcu_callback: rcu_preempt rhp=0xffff9f3e8d28e300 func=file_free_rcu 1
 chrome-1975 [000] 1472.377594: sys_enter_close: fd: 0x0000002d
 DrmThread-1993 [002] 1472.377825: sys_enter_close: fd: 0x0000003f
 DrmThread-1993 [002] 1472.378043: sys_enter_close: fd: 0x0000003f
 chrome-1975 [000] 1472.378227: sys_enter_close: fd: 0x00000046
VizCompositorTh-1999 [006] 1472.378341: sys_enter_close: fd: 0x00000046
VizCompositorTh-1999 [006] 1472.378356: sys_enter_close: fd: 0x0000003f
 kworker/2:1-7250 [002] 1472.378524: rcu_callback: rcu_preempt rhp=0xffff9f41ef89f600 func=rcu_work_rcufn 1
 kworker/0:4-3506 [000] 1472.379626: rcu_callback: rcu_preempt rhp=0xffff9f41ef81f600 func=rcu_work_rcufn 1

kworker/10:2-2105 [010] 1472.380627: rcu_callback: rcu_preempt rhp=0xffff9f41efa9f600 func=rcu_work_rcufn 1
 DrmThread-1993 [002] 1472.391294: sys_enter_close: fd: 0x00000033
 DrmThread-1993 [002] 1472.391306: rcu_callback: rcu_preempt rhp=0xffff9f3eb9328600 func=file_free_rcu 1

Observation: Logging in Android (as example)

Android uses CONFIG_RCU_NO_CB by default to offload all CPUs.

Observation: Logging in Android (as example)
Example: Logging during static image (Android).

Static image is important use-case for power testing on Android. The system is
mostly idle to minimize a power drain of the platform:

● CPU stops refreshing panel and panel self-refreshes on it own.
● CPUs spend most of their time in deepest C-state
● SoC bandwidth is minimal (memory bus, CPU/cache frequencies, etc.).

Logging does constant file open/close giving RCU work when FDs get freed. As a
side effect of such periodic light load, many wakeups happen due to frequent
kicking an RCU-core for initializing a GP to invoke callbacks after it passes.

Below is a post process of scheduler ftrace for static image use-case during 30 seconds

(this is with CONFIG_RCU_NOCB_CPU with all CPUs offloaded).

<wake-up-trace-log>
 rcuop/2 pid: 33 woken-up 36709 interval: min 1320 max 71837 avg 9807
 rcuop/3 pid: 40 woken-up 36944 interval: min 1582 max 78649 avg 9744
 rcuop/0 pid: 15 woken-up 40570 interval: min 1520 max 80442 avg 8873
 rcuop/1 pid: 26 woken-up 40695 interval: min 1414 max 80043 avg 8846
 rcuog/0 pid: 14 woken-up 57907 interval: min 73 max 27855 avg 6217
 idd@1.0. pid: 1116 woken-up 89498 interval: min 231 max 17442186 avg 4005
 rcu_preempt pid: 13 woken-up 90203 interval: min 39 max 8505 avg 3991
 iddd pid: 1195 woken-up 250398 interval: min 92 max 16375 avg 1437
<wake-up-trace-log>

A trace was taken on the ARM big.LITTLE system. It is obvious that the biggest part belongs to
the “iddd logger” whereas a second place is fully owned by the RCU-core subsystem marked
as red.

Observation: Logging in Android (as example)

RCU mostly invokes callbacks related to the VFS, SELinux subsystems during logging:

● file_free_rcu()
● inode_free_by_rcu()
● i_callback()
● __d_free()
● avc_node_free()

Since system is lightly loaded and a number of posted callbacks to be invoked are rather

small, between 1-10, such pattern produce most of the wakeups (in static image use-case)

to offload a CPU with __only__ few callbacks there.

Observation: Logging in Android (as example)

Solution 4: Observation(cont.)
Observation: Logging in Android

Issue 2: RCU queuing CBs on lightly loaded system

Let us explore some solutions to this…

Issue 2: RCU queuing CBs on lightly loaded system

Solution 1: Delay RCU processing using jiffies_till_{first,next}_fqs

● Great power savings

● Problem:
○ Causes slow down in ALL call_rcu() users globally whether they like it or not.

○ Causes slow down in synchronize_rcu() users globally.

○ Significantly regresses boot time.

jiffies_till_first_fqs &
jiffies_till_next_fqs

Baseline
(NOCB)

= 8, 8 = 16, 16 = 24, 24 = 32, 32

SoC+Memory, power savings w.r.t
Baseline

0% 2% 3% 3.4% 3.2%

Solution 1: Jiffies causes massive synchronize_rcu()
slowdown.

○ ChromeOS tab switching autotest

■ Due to synchronize_rcu() latency increases quickly from 23 ms to 169 ms

(with changing jiffies from 3 to 32)

○ The same evaluation with synchronize_rcu_expedited() gives us a latency of < 1

msec at jiffies = 32

Issue 2: RCU queuing CBs on lightly loaded system

Solution 1: Jiffies increase causing function tracer issues

Several paths in ftrace code uses synchronize_rcu():

For but 2 examples:

● pid_write() triggered by write to

/sys/kernel/tracing/debug/tracing/set_ftrace_pid

● ring buffer code such as ring_buffer_resize()

End result is trace-cmd record -p function_graph can take several more seconds to start

and stop recording, than it would otherwise.

Issue 2: RCU queuing CBs on lightly loaded system

Solution 1: Jiffies causing boot-time issues (SELinux)

SELinux enforcing during ChromeOS boot up invokes synchronize_rcu()

[17.715904] => __wait_rcu_gp

[17.715904] => synchronize_rcu

[17.715904] => selinux_netcache_avc_callback

[17.715904] => avc_ss_reset

[17.715904] => sel_write_enforce

[17.715904] => vfs_write

[17.715904] => ksys_write

[17.715904] => do_syscall_64

Issue 2: RCU queuing CBs on lightly loaded system

Solution 1: Jiffies causing per-cpu refcount regression

● RCU used to toggle atomic-mode and vice versa

● Can badly hurt paths that don’t really want to free memory but use call_rcu() for some other

purposes. Like suspend.

● call_rcu() slow down affects percpu refcounters

● These counters use RCU when switching to atomic-mode

○ __percpu_ref_switch_mode() -> percpu_ref_switch_to_atomic_sync().

● This call slows down for the per-cpu refcount users such as blk_pre_runtime_suspend().

This is why, we cannot assume call_rcu() users will mostly just want to free memory. There

could be cases just like this, and blanket slow down of call_rcu() might bite unexpectedly.

Issue 2: RCU queuing CBs on lightly loaded system

Solution 1: Jiffies with expedited option

● The previous synchronize_rcu() issues can be mitigated
by using expedited boot option which expedites while
ensuring good power efficiency.

● However, experiments showed that using expedited
RCU with jiffies, still causes a boot time regression.

● Also, the expedited option is expensive, and can affect
real-time workloads.

Issue 2: RCU queuing CBs on lightly loaded system

Solution 2: Delay RCU CB processing (Lazy RCU)

● Delay Callback execution as long as possible.

● Introduce new API for lazy-RCU (call_rcu_lazy).

● Need to handle several side-effects:

○ RCU barrier.

○ CPU hotplug etc

○ Memory pressure

○ Offloading and De-offloading.

Issue 2: RCU queuing CBs on lightly loaded system

Solution 2: Delay RCU CB processing (Lazy RCU)
Issue 2: RCU queuing CBs on lightly loaded system

Solution 2: Delay RCU CB processing (Lazy RCU)
Issue 2: RCU queuing CBs on lightly loaded system

DELAYED

CPU 0 CPU 1
Queue CB

Idle + tick-off

Time

Invoke CB

 main CB list
Locking

Can cause performance overhead on system with frequent CB
queue/invoke due to locking!

Lazy RCU: design approach

Issue 2: RCU queuing CBs on lightly loaded system

CPU 0 CPU 1
Queue CB

Time

Invoke CB

 main CB list
Locking

By-pass list is per-cpu and but batches CBs and wakes RCU 2 jiffy
delay, and relieves lock contention on the main CB list.

Lazy RCU: design approach - re-use the bypass list.

Issue 2: RCU queuing CBs on lightly loaded system

Queue in
local list
(bypass)

Queue in
local list
(bypass)

Queue CB

CPU 0 CPU 1
Queue CB

Time

Invoke CB

 main CB list
Locking

Flush the bypass list if there is memory pressure, or lengthy timer expires!

Lazy RCU: design approach - re-use the bypass list.

Issue 2: RCU queuing CBs on lightly loaded system

Queue in
local list
(bypass)

Queue in
local list
(bypass)

Queue CB

Timer,
Mem Pressure,
Barrier

RCU lazy further reduces 300+ wakes
per seconds, and improves SoC
package C-states residency & Power

Solution 2: Delay RCU CB processing (Lazy RCU)
Issue 2: RCU queuing CBs on lightly loaded system

Use-case: Local video playback via
Chrome browser, VP9 1080p @ 30
fps content

Device: Chrome reference device,
AlderLake Hybrid CPU with 2
Cores (with Hyperthreading) + 8
Atoms

Solution 2: Delay RCU CB processing (Lazy RCU)
Latest Patches:

https://lore.kernel.org/all/20220819204857.3066329-1-joel@joelfernandes.org/

Summary:

● Introduce new API for lazy-RCU (call_rcu_lazy).
● Queue CBs into the Bypass list.
● Flush the Bypass list when:

○ Non-Lazy CBs show up.
○ Bypass list grows too big or is too old.
○ Memory is low.

● Several corner cases now handled (rcu_barrier, CPU hotplug etc).

Issue 2: RCU queuing CBs on lightly loaded system

https://lore.kernel.org/all/20220819204857.3066329-1-joel@joelfernandes.org/

Home screen swipe (as example)

Home screen swipe power(~3% delta)

Observation: ChromeOS when idle
● Some CBs in the system “trickle” frequently.

● Several callbacks constantly queued. rcutop refreshing every 5 seconds. ChromeOS logged
in with screen off. Device on battery power.

Drawbacks and considerations
● Depends on user of call_rcu() using lazy

○ If a new user of call_rcu() shows up, it would go unnoticed and negate the benefits.
○ Updates to docs may help: https://docs.kernel.org/RCU/whatisRCU.html#id11

● Risk of user using call_rcu_lazy() accidentally when they should really use call_rcu(). For
example, a use case requiring synchronous wait.

● Risks on memory pressure:
○ Protection is enough on extreme condition?
○ Can test with more test cases such as ChromeOS memory pressure test.

Thanks!

● Paul McKenney (for putting up with us).
● Presenters.
● LPC sponsors and organizers.
● Frederic Weisbec for reviewing code.

Questions?

